05-04-2022, 08:02 AM
(This post was last modified: 05-17-2022, 06:26 PM by TarotRedhand.)
This section contains the following public routines -
And here is the library -
Next up is LONG Integer -
TR
Code: (Select All)
' Integer
SUB IdentityIMatrix(A%(), MatrixSize%)
SUB ZeroIMatrix(A%())
SUB ConIMatrix(A%())
SUB IMatrixNegate(A%())
SUB IMatrixTransPose(A%(), B%())
SUB IMatrixCopy(This%(), ToThis%())
SUB IMatrixPrint(A%())
SUB IMatrixFilePrint(A%(), FileNumber)
SUB IMatrixInput(A%())
SUB IMatrixFileInput(A%() , FileNum)
SUB IMatrixAdd(A%(), B%(), C%())
SUB IMatrixScalarAdd(A%(), B%, C%())
SUB IMatrixSubtract(A%(), B%(), C%())
SUB IMatrixScalarSubtract(A%(), B%, C%())
SUB IMatrixMultiply(A%(), B%(), C%())
SUB IMatrixScalarMultiply(A%(), B%, C%())
FUNCTION IMatrixMaximum%(A%())
FUNCTION IMatrixMinimum%(A%())
And here is the library -
Code: (Select All)
REM ******************************************************************
REM * This library deals with 2 dimensional arrays that are treated *
REM * as though they were mathematical matrices. I have included *
REM * all the routines that are associated with matrices that make *
REM * sense for the various TYPEs that are used. So for integers *
REM * and longs there no routines for mean, variance, inverse or *
REM * determinant. Also for singles and doubles I have left out *
REM * routines for inverse and determinant as their use is very *
REM * limited and specialised. *
REM ******************************************************************
REM ******************************************************************
REM * Private SUB only intended for use by the routines in this *
REM * library. *
REM ******************************************************************
SUB MatrixError(Where$, Fault$)
PRINT "Error in ";Where$;" - ";Fault$
STOP
END SUB ' | MatrixError
REM ******************************************************************
REM * Integer Matrices *
REM ******************************************************************
REM ******************************************************************
REM * A%() is REDIM'ed to be a square matrix with MatrixSize& rows *
REM * and MatrixSize& columns. All the elements of A%() are set to *
REM * zero except those where the row and the column are equal which *
REM * are set to one e.g. A%(1,1) = 1, A%(1,2) = 0. *
REM ******************************************************************
SUB IdentityIMatrix(A%(), MatrixSize&)
MatrixSize& = ABS(MatrixSize&)
REDIM A%(1 TO MatrixSize&, 1 TO MatrixSize&)
FOR Column& = 1 TO MatrixSize&
FOR Row& = 1 TO MatrixSize&
IF Row& = Column& THEN
A%(Row&,Column&) = 1
ELSE
A%(Row&,Column&) = 0
END IF
NEXT Row&
NEXT Column&
END SUB ' | IdentityIMatrix
REM ******************************************************************
REM * All the elements of A%() are set to zero. *
REM ******************************************************************
SUB ZeroIMatrix(A%())
ARowStart& = LBOUND(A%)
ARowEnd& = UBOUND(A%)
AColStart& = LBOUND(A%, 2)
AColEnd& = UBOUND(A%, 2)
FOR Column& = AColStart& To AColEnd&
FOR Row& = ARowStart& TO ARowEnd&
A%(Row&,Column&) = 0
NEXT Row&
NEXT Column&
END SUB ' | ZeroIMatrix
REM ******************************************************************
REM * All the elements of A%() are set to one. *
REM ******************************************************************
SUB ConIMatrix(A%())
ARowStart& = LBOUND(A%)
ARowEnd& = UBOUND(A%)
AColStart& = LBOUND(A%, 2)
AColEnd& = UBOUND(A%, 2)
FOR Column& = AColStart& To AColEnd&
FOR Row& = ARowStart& TO ARowEnd&
A%(Row&,Column&) = 1
NEXT Row&
NEXT Column&
END SUB ' | ConIMatrix
REM ******************************************************************
REM * LET A%() = -A%() e.g if A%(1,1) = 5 then after this routine *
REM * A%(1,1) = -5. *
REM ******************************************************************
SUB IMatrixNegate(A%())
ARowStart& = LBOUND(A%)
ARowEnd& = UBOUND(A%)
AColStart& = LBOUND(A%, 2)
AColEnd& = UBOUND(A%, 2)
FOR Column& = AColStart& To AColEnd&
FOR Row& = ARowStart& TO ARowEnd&
A%(Row&,Column&) = -A%(Row&,Column&)
NEXT Row&
NEXT Column&
END SUB ' | IMatrixNegate
REM ******************************************************************
REM * B%() is REDIM'ed to have the same number of columns as A%() *
REM * has rows and to have the same number of rows as A%() has *
REM * columns, and then the rows of A%() are copied to the columns *
REM * of B%(). *
REM ******************************************************************
SUB IMatrixTransPose(A%(), B%())
ARowStart& = LBOUND(A%)
AColStart& = LBOUND(A%, 2)
ARowEnd& = UBOUND(A%)
AColEnd& = UBOUND(A%, 2)
REDIM B%(AColStart& TO AColEnd&, ARowStart& TO ARowEnd&)
FOR P& = AColStart& TO AColEnd&
FOR Q& = ARowStart& TO ARowEnd&
B%(P&, Q&) = A%(Q&, P&)
NEXT Q&
NEXT P&
END SUB ' | IMatrixTransPose
REM ******************************************************************
REM * REDIM's ToThis%() to be the same size as This%() and then *
REM * copies the contents of This%() to ToThis%(). *
REM ******************************************************************
SUB IMatrixCopy(This%(), ToThis%())
RowStart& = LBOUND(This%)
RowFinish& = UBOUND(This%)
ColStart& = LBOUND(This%, 2)
ColFinish& = UBOUND(This%,2)
REDIM ToThis%(RowStart& TO RowFinish&, ColStart& TO ColFinish&)
FOR Column& = ColStart& TO ColFinish&
FOR Row& = RowStart& To RowFinish&
ToThis%(Row&,Column&) = This%(Row&,Column&)
NEXT Row&
NEXT Column&
END SUB ' | IMatrixCopy
REM ******************************************************************
REM * Display the contents of A%() on screen, formatted in columns. *
REM ******************************************************************
SUB IMatrixPrint(A%())
ARowStart& = LBOUND(A%)
ARowEnd& = UBOUND(A%)
AColStart& = LBOUND(A%, 2)
AColEnd& = UBOUND(A%, 2)
FOR Row& = ARowStart& TO ARowEnd&
FOR Column& = AColStart& To AColEnd&
PRINT A%(Row&,Column&);" ";
NEXT Column&
PRINT
NEXT Row&
END SUB ' | IMatrixPrint
REM ******************************************************************
REM * Saves the contents of A%() to the file specified by FileNumber *
REM ******************************************************************
SUB IMatrixFilePrint(A%(), FileNumber)
ARowStart& = LBOUND(A%)
PRINT #FileNumber, ARowStart&;" ";
ARowEnd& = UBOUND(A%)
PRINT #FileNumber, ARowEnd&;" ";
AColStart& = LBOUND(A%, 2)
PRINT #FileNumber, AColStart&;" ";
AColEnd& = UBOUND(A%, 2)
PRINT #FileNumber, AColEnd&;" ";
PRINT #FileNumber,
FOR Row& = ARowStart& TO ARowEnd&
FOR Column& = AColStart& To AColEnd&
PRINT #FileNumber, A%(Row&,Column&);" ";
NEXT Column&
PRINT #FileNumber,
NEXT Row&
END SUB ' | IMatrixFilePrint
REM ******************************************************************
REM * This routine is for the sadists and masochists among you in *
REM * that it inputs all the information necessary to create and *
REM * fill a matrix fromthe keyboard. *
REM ******************************************************************
SUB IMatrixInput(A%())
INPUT"Lowest subscript for A%(1):",A
INPUT"Highest subscript for A%(1):",B
INPUT"Lowest subscript for A%(2):",C
INPUT"Lowest subscript for A%(2):",D
REDIM A%(A TO B, C TO D)
PRINT
FOR Row& = A TO B
FOR Column& = C TO D
PRINT "Enter value for position ";Row&;", ";Column&;":";
INPUT A
A%(Row&,Column&) = FIX(A)
NEXT Column&
NEXT Row&
END SUB ' | IMatrixInput
REM ******************************************************************
REM * This routine reads all the information necessary to create and *
REM * fill a matrix ( A%() ) from a file specified by filenum. This *
REM * routine is the complement to IMatrixFilePrint and retrieves *
REM * the information in the same order as that routine writes it. *
REM ******************************************************************
SUB IMatrixFileInput(A%() , FileNum)
INPUT #FileNum, A
INPUT #FileNum, B
INPUT #FileNum, C
INPUT #FileNum, D
A = ABS(FIX(A))
B = ABS(FIX(B))
C = ABS(FIX(C))
D = ABS(FIX(D))
REDIM A%(A TO B, C TO D)
FOR Row& = A TO B
FOR Column& = C TO D
INPUT #FileNum, A
A%(Row&,Column&) = FIX(A)
NEXT Column&
NEXT Row&
END SUB ' | IMatrixFileInput
REM ******************************************************************
REM * Matrix addition e.g. C%() = A%() + B%(). A%() and B%() must *
REM * have identical upper and lower bounds. C%() is REDIM'ed to be *
REM * the same size. Each element of C%() is assigned the result of *
REM * adding the equivalent elements in A%() and B%(). *
REM ******************************************************************
SUB IMatrixAdd(A%(), B%(), C%())
ID$ = "IMatrixAdd"
ARowStart& = LBOUND(A%)
BRowStart& = LBOUND(B%)
IF ARowStart& <> BRowStart& THEN
MatrixError ID$, "Lower bounds of A(1) and B(1) not identical!"
END IF
ARowEnd& = UBOUND(A%)
BRowEnd& = UBOUND(B%)
IF ARowEnd& <> BRowEnd& THEN
MatrixError ID$, "Upper bounds of A(1) and B(1) not identical!"
END IF
AColStart& = LBOUND(A%, 2)
BColStart&& = LBOUND(B%, 2)
IF AColStart& <> BColStart&& THEN
MatrixError ID$, "Lower bounds of A(2) and B(2) not identical!"
END IF
AColEnd& = UBOUND(A%, 2)
BColEnd& = UBOUND(B%, 2)
IF ARowEnd& <> BRowEnd& THEN
MatrixError ID$, "Upper bounds of A(1) and B(1) not identical!"
END IF
REDIM C%(ARowStart& TO ARowEnd&, AColStart& TO AColEnd&)
FOR Column& = AColStart& To AColEnd&
FOR Row& = ARowStart& TO ARowEnd&
C%(Row&,Column&) = A%(Row&,Column&) + B%(Row&,Column&)
NEXT Row&
NEXT Column&
END SUB ' | IMatrixAdd
REM ******************************************************************
REM * Matrix scalar addition e.g. C%() = A%() + B%. C%() is *
REM * REDIM'ed to be identical in size to A%(). Each element of *
REM * C%() is assigned the result of adding B% to the equivalent *
REM * elements in A%(). *
REM ******************************************************************
SUB IMatrixScalarAdd(A%(), B%, C%())
ARowStart& = LBOUND(A%)
ARowEnd& = UBOUND(A%)
AColStart& = LBOUND(A%, 2)
AColEnd& = UBOUND(A%, 2)
REDIM C%(ARowStart& TO ARowEnd&, AColStart& TO AColEnd&)
FOR Column& = AColStart& To AColEnd&
FOR Row& = ARowStart& TO ARowEnd&
C%(Row&,Column&) = A%(Row&,Column&) + B%
NEXT Row&
NEXT Column&
END SUB ' | IMatrixScalarAdd
REM ******************************************************************
REM * Matrix subtraction e.g. C%() = A%() - B%(). A%() and B%() *
REM * must have identical upper and lower bounds. C%() is REDIM'ed *
REM * to be the same size. Each element of C%() is assigned the *
REM * result of subtracting the equivalent element of B%() from the *
REM * equivalent element of A%(). *
REM ******************************************************************
SUB IMatrixSubtract(A%(), B%(), C%())
ID$ = "IMatrixSubtract"
ARowStart& = LBOUND(A%)
BRowStart& = LBOUND(B%)
IF ARowStart& <> BRowStart& THEN
MatrixError ID$, "Lower bounds of A(1) and B(1) not identical!"
END IF
ARowEnd& = UBOUND(A%)
BRowEnd& = UBOUND(B%)
IF ARowEnd& <> BRowEnd& THEN
MatrixError ID$, "Upper bounds of A(1) and B(1) not identical!"
END IF
AColStart& = LBOUND(A%, 2)
BColStart& = LBOUND(B%, 2)
IF AColStart& <> BColStart& THEN
MatrixError ID$, "Lower bounds of A(2) and B(2) not identical!"
END IF
AColEnd& = UBOUND(A%, 2)
BColEnd& = UBOUND(B%, 2)
IF ARowEnd& <> BRowEnd& THEN
MatrixError ID$, "Upper bounds of A(1) and B(1) not identical!"
END IF
REDIM C%(ARowStart& TO ARowEnd&, AColStart& TO AColEnd&)
FOR Column& = AColStart& To AColEnd&
FOR Row& = ARowStart& TO ARowEnd&
C%(Row&,Column&) = A%(Row&,Column&) - B%(Row&,Column&)
NEXT Row&
NEXT Column&
END SUB ' | IMatrixSubtract
REM ******************************************************************
REM * Matrix scalar subtraction e.g. C%() = A%() - B%. C%() is *
REM * REDIM'ed to be the same size as A%(). Each element of C%() is *
REM * assigned the result of subtracting B% from the equivalent of *
REM * A%(). *
REM ******************************************************************
SUB IMatrixScalarSubtract(A%(), B%, C%())
ARowStart& = LBOUND(A%)
ARowEnd& = UBOUND(A%)
AColStart& = LBOUND(A%, 2)
AColEnd& = UBOUND(A%, 2)
REDIM C%(ARowStart& TO ARowEnd&, AColStart& TO AColEnd&)
FOR Column& = AColStart& To AColEnd&
FOR Row& = ARowStart& TO ARowEnd&
C%(Row&,Column&) = A%(Row&,Column&) - B%
NEXT Row&
NEXT Column&
END SUB ' | IMatrixScalarSubtract
REM ******************************************************************
REM * Matrix multiplication e.g. C%() = A%() * B%(). As such it is *
REM * easier to direct you to look at the source code for this *
REM * routine rather than to try to explain it, other than to say *
REM * that C%() is REDIM'ed according to the standard matrix formula *
REM ******************************************************************
SUB IMatrixMultiply(A%(), B%(), C%())
ID$ = "IMatrixMultiply"
ARowStart& = LBOUND(A%)
BRowStart& = LBOUND(B%)
IF ARowStart& <> BRowStart& THEN
MatrixError ID$, "Lower bounds of A(1) and B(1) not identical!"
END IF
AColStart& = LBOUND(A%, 2)
BColStart& = LBOUND(B%, 2)
IF AColStart& <> BColStart& THEN
MatrixError ID$, "Lower bounds of A(2) and B(2) not identical!"
END IF
BRowEnd& = UBOUND(B%)
AColEnd& = UBOUND(A%, 2)
IF AColEnd& <> BRowEnd& THEN
MatrixError ID$, "Upper bounds of A(2) and B(1) not identical!"
END IF
ARowEnd& = UBOUND(A%)
BColEnd& = UBOUND(B%, 2)
REDIM C%(ARowStart& TO ARowEnd&, BColStart& TO BColEnd&)
FOR Row& = ARowStart& TO ARowEnd&
FOR Column& = BColStart& To BColEnd&
Sum% = 0
FOR Z& = AColStart& TO AColEnd&
Sum% = Sum% + (A%(Row&, Z&) * B%(Z&, Column&))
NEXT Z&
C%(Row&,Column&) = Sum%
NEXT Column&
NEXT Row&
END SUB ' | IMatrixMultiply
REM ******************************************************************
REM * Matrix scalar multiplication e.g. C%() = A%() * B%. C%() is *
REM * REDIM'ed to be the same size as A%(). Each element of C%() is *
REM * assigned the result of multiplying the equivalent element of *
REM * A%() by B%. *
REM ******************************************************************
SUB IMatrixScalarMultiply(A%(), B%, C%())
ARowStart& = LBOUND(A%)
AColStart& = LBOUND(A%, 2)
ARowEnd& = UBOUND(A%)
AColEnd& = UBOUND(A%, 2)
REDIM C%(ARowStart& TO ARowEnd&, AColStart& TO AColEnd&)
FOR Column& = AColStart& To AColEnd&
FOR Row& = ARowStart& TO ARowEnd&
C%(Row&,Column&) = A%(Row&,Column&) * B%
NEXT Row&
NEXT Column&
END SUB ' | IMatrixScalarMultiply
REM ******************************************************************
REM * Returns the maximum element contained in A%(). *
REM ******************************************************************
FUNCTION IMatrixMaximum%(A%())
MyMax% = -32768
ARowStart& = LBOUND(A%)
ARowEnd& = UBOUND(A%)
AColStart& = LBOUND(A%, 2)
AColEnd& = UBOUND(A%, 2)
FOR Column& = AColStart& To AColEnd&
FOR Row& = ARowStart& TO ARowEnd&
IF MyMax% < A%(Row&, Column&) THEN
MyMax% = A%(Row&,Column&)
END IF
NEXT Row&
NEXT Column&
IMatrixMaximum% = MyMax%
END FUNCTION ' | IMatrixMaximum%
REM ******************************************************************
REM * Returns the minimum element contained in A%(). *
REM ******************************************************************
FUNCTION IMatrixMinimum%(A%())
MyMin% = 32767
ARowStart& = LBOUND(A%)
ARowEnd& = UBOUND(A%)
AColStart& = LBOUND(A%, 2)
AColEnd& = UBOUND(A%, 2)
FOR Column& = AColStart& To AColEnd&
FOR Row& = ARowStart& TO ARowEnd&
IF MyMin% > A%(Row&, Column&) THEN
MyMin% = A%(Row&,Column&)
END IF
NEXT Row&
NEXT Column&
IMatrixMinimum% = MyMin%
END FUNCTION ' | IMatrixMinimum%
Next up is LONG Integer -
TR