Huge Matrices Library [Updated]
#3
This section contains the following public routines -

Code: (Select All)
' Long Integer

SUB IdentityLMatrix(A&(), MatrixSize&)
SUB ZeroLMatrix(A&())
SUB ConLMatrix(A&())
SUB LMatrixNegate(A&())
SUB LMatrixTransPose(A&(), B&())
SUB LMatrixCopy(This&(), ToThis&())
SUB LMatrixPrint(A&())
SUB LMatrixFilePrint(A&(), FileNumber)
SUB LMatrixInput(A&())
SUB LMatrixFileInput(A&() , FileNum)
SUB LMatrixAdd(A&(), B&(), C&())
SUB LMatrixScalarAdd(A&(), B&, C&())
SUB LMatrixSubtract(A&(), B&(), C&())
SUB LMatrixScalarSubtract(A&(), B&, C&())
SUB LMatrixMultiply(A&(), B&(), C&())
SUB LMatrixScalarMultiply(A&(), B&, C&())
FUNCTION LMatrixMaximum&(A&())
FUNCTION LMatrixMinimum&(A&())

Actual code -

Code: (Select All)
REM ******************************************************************
REM * This library deals with 2 dimensional arrays that are treated  *
REM * as though they were mathematical matrices.  I have included    *
REM * all the routines that are associated with matrices that make  *
REM * sense for the various TYPEs that are used.  So for integers    *
REM * and longs there no routines for mean, variance, inverse or    *
REM * determinant.  Also for singles and doubles I have left out    *
REM * routines for inverse and determinant as their use is very      *
REM * limited and specialised.                                      *
REM ******************************************************************

REM ******************************************************************
REM * Private SUB only intended for use by the routines in this      *
REM * library.                                                      *
REM ******************************************************************

SUB MatrixError(Where$, Fault$)
    PRINT "Error in ";Where$;" - ";Fault$
    STOP
END SUB        ' | MatrixError

REM ******************************************************************
REM * Long Integer Matrices                                          *
REM ******************************************************************

REM ******************************************************************
REM * A&() is REDIM'ed to be a square matrix with MatrixSize& rows  *
REM * and MatrixSize& columns.  All the elements of A&() are set to  *
REM * zero except those where the row and the column are equal which *
REM * are set to one e.g. A&(1,1) = 1, A&(1,2) = 0.                  *
REM ******************************************************************

SUB IdentityLMatrix(A&(), MatrixSize&)
    MatrixSize& = ABS(MatrixSize&)
    REDIM A&(1 TO MatrixSize&, 1 TO MatrixSize&)
    FOR Column& = 1 TO MatrixSize&
        FOR Row& = 1 TO MatrixSize&
            IF Row& = Column& THEN
                A&(Row&,Column&) = 1
            ELSE
                A&(Row&,Column&) = 0
            END IF
        NEXT Row&
    NEXT Column&
END SUB        ' | IdentityLMatrix

REM ******************************************************************
REM * All the elements of A&() are set to zero.                      *
REM ******************************************************************

SUB ZeroLMatrix(A&())
    ARowStart& = LBOUND(A&)
    ARowEnd& = UBOUND(A&)
    AColStart& = LBOUND(A&, 2)
    AColEnd& = UBOUND(A&, 2)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            A&(Row&,Column&) = 0
        NEXT Row&
    NEXT Column&
END SUB        ' | ZeroLMatrix

REM ******************************************************************
REM * All the elements of A&() are set to one.                      *
REM ******************************************************************

SUB ConLMatrix(A&())
    ARowStart& = LBOUND(A&)
    ARowEnd& = UBOUND(A&)
    AColStart& = LBOUND(A&, 2)
    AColEnd& = UBOUND(A&, 2)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            A&(Row&,Column&) = 1
        NEXT Row&
    NEXT Column&
END SUB        ' | ConLMatrix

REM ******************************************************************
REM * LET A&() = -A&() e.g if A&(1,1) = 5 then after this routine    *
REM * A&(1,1) = -5.                                                  *
REM ******************************************************************

SUB LMatrixNegate(A&())
    ARowStart& = LBOUND(A&)
    ARowEnd& = UBOUND(A&)
    AColStart& = LBOUND(A&, 2)
    AColEnd& = UBOUND(A&, 2)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            A&(Row&,Column&) = -A&(Row&,Column&)
        NEXT Row&
    NEXT Column&
END SUB        ' | LMatrixNegate

REM ******************************************************************
REM * B&() is REDIM'ed to have the same number of columns as A&()    *
REM * has rows and to have the same number of rows as A&() has      *
REM * columns, and then the rows of A&() are copied to the columns  *
REM * of B&().                                                      *
REM ******************************************************************

SUB LMatrixTransPose(A&(), B&())
    ARowStart& = LBOUND(A&)
    AColStart& = LBOUND(A&, 2)
    ARowEnd& = UBOUND(A&)
    AColEnd& = UBOUND(A&, 2)
    REDIM B&(AColStart& TO AColEnd&, ARowStart& TO ARowEnd&)
    FOR P& = AColStart& TO AColEnd&
        FOR Q& = ARowStart& TO ARowEnd&
            B&(P&, Q&) = A&(Q&, P&)
        NEXT Q&
    NEXT P&
END SUB        ' | LMatrixTransPose

REM ******************************************************************
REM * REDIM's ToThis&() to be the same size as This&() and then      *
REM * copies the contents of This&() to ToThis&().                  *
REM ******************************************************************

SUB LMatrixCopy(This&(), ToThis&())
    RowStart& = LBOUND(This&)
    RowFinish& = UBOUND(This&)
    ColStart& = LBOUND(This&, 2)
    ColFinish& = UBOUND(This&,2)
    REDIM ToThis&(RowStart& TO RowFinish&, ColStart& TO ColFinish&)
    FOR Column& = ColStart& TO ColFinish&
        FOR Row& = RowStart& To RowFinish&
            ToThis&(Row&,Column&) = This&(Row&,Column&)
        NEXT Row&
    NEXT Column&
END SUB        ' | LMatrixCopy

REM ******************************************************************
REM * Display the contents of A&() on screen, formatted in columns.  *
REM ******************************************************************

SUB LMatrixPrint(A&())
    ARowStart& = LBOUND(A&)
    ARowEnd& = UBOUND(A&)
    AColStart& = LBOUND(A&, 2)
    AColEnd& = UBOUND(A&, 2)
    FOR Row& = ARowStart& TO ARowEnd&
        FOR Column& = AColStart& To AColEnd&
            PRINT A&(Row&,Column&);" ";
        NEXT Column&
        PRINT
    NEXT Row&
END SUB        ' | LMatrixPrint

REM ******************************************************************
REM * Saves the contents of A&() to the file specified by FileNumber *
REM ******************************************************************

SUB LMatrixFilePrint(A&(), FileNumber)
    ARowStart& = LBOUND(A&)
    PRINT #FileNumber, ARowStart&;" ";
    ARowEnd& = UBOUND(A&)
    PRINT #FileNumber, ARowEnd&;" ";
    AColStart& = LBOUND(A&, 2)
    PRINT #FileNumber, AColStart&;" ";
    AColEnd& = UBOUND(A&, 2)
    PRINT #FileNumber, AColEnd&;" ";
    PRINT #FileNumber,
    FOR Row& = ARowStart& TO ARowEnd&
        FOR Column& = AColStart& To AColEnd&
            PRINT #FileNumber, A&(Row&,Column&);" ";
        NEXT Column&
        PRINT #FileNumber,
    NEXT Row&
END SUB        ' | LMatrixFilePrint

REM ******************************************************************
REM * This routine is for the sadists and masochists among you in    *
REM * that it inputs all the information necessary to create and    *
REM * fill a matrix from the keyboard.                              *
REM ******************************************************************

SUB LMatrixInput(A&())
    INPUT"Lowest subscript for A&(1):",A
    INPUT"Highest subscript for A&(1):",B
    INPUT"Lowest subscript for A&(2):",C
    INPUT"Lowest subscript for A&(2):",D
    REDIM A&(A TO B, C TO D)
    PRINT
    FOR Row& = A TO B
        FOR Column& = C TO D
            PRINT "Enter value for position ";Row&;", ";Column&;":";
            INPUT A
            A&(Row&,Column&) = FIX(A)
        NEXT Column&
    NEXT Row&
END SUB        ' | LMatrixInput

REM ******************************************************************
REM * This routine reads all the information necessary to create and *
REM * fill a matrix ( A&() ) from a file specified by filenum.  This *
REM * routine is the complement to IMatrixFilePrint and retrieves    *
REM * the information in the same order as that routine writes it.  *
REM ******************************************************************

SUB LMatrixFileInput(A&() , FileNum)
    INPUT #FileNum, A
    INPUT #FileNum, B
    INPUT #FileNum, C
    INPUT #FileNum, D
    A = ABS(FIX(A))
    B = ABS(FIX(B))
    C = ABS(FIX(C))
    D = ABS(FIX(D))
    REDIM A&(A TO B, C TO D)
    FOR Row& = A TO B
        FOR Column& = C TO D
            INPUT #FileNum, A
            A&(Row&,Column&) = FIX(A)
        NEXT Column&
    NEXT Row&
END SUB        ' | LMatrixFileInput

REM ******************************************************************
REM * Matrix addition e.g. C&() = A&() + B&().  A&() and B&() must  *
REM * have identical upper and lower bounds.  C&() is REDIM'ed to be *
REM * the same size.  Each element of C&() is assigned the result of *
REM * adding the equivalent elements in A&() and B&().              *
REM ******************************************************************

SUB LMatrixAdd(A&(), B&(), C&())
    ID$ = "LMatrixAdd"
    ARowStart& = LBOUND(A&)
    BRowStart& = LBOUND(B&)
    IF ARowStart& <> BRowStart& THEN
        MatrixError ID$, "Lower bounds of A(1) and B(1) not identical!"
    END IF
    ARowEnd& = UBOUND(A&)
    BRowEnd& = UBOUND(B&)
    IF ARowEnd& <> BRowEnd& THEN
        MatrixError ID$, "Upper bounds of A(1) and B(1) not identical!"
    END IF
    AColStart& = LBOUND(A&, 2)
    BColStart& = LBOUND(B&, 2)
    IF AColStart& <> BColStart& THEN
        MatrixError ID$, "Lower bounds of A(2) and B(2) not identical!"
    END IF
    AColEnd& = UBOUND(A&, 2)
    BColEnd& = UBOUND(B&, 2)
    IF ARowEnd& <> BRowEnd& THEN
        MatrixError ID$, "Upper bounds of A(1) and B(1) not identical!"
    END IF
    REDIM C&(ARowStart& TO ARowEnd&, AColStart& TO AColEnd&)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            C&(Row&,Column&) = A&(Row&,Column&) + B&(Row&,Column&)
        NEXT Row&
    NEXT Column&
END SUB        ' | LMatrixAdd

REM ******************************************************************
REM * Matrix scalar addition e.g. C&() = A&() + B&.  C&() is        *
REM * REDIM'ed to be identical in size to A&().  Each element of    *
REM * C&() is assigned the result of adding B& to the equivalent    *
REM * elements in A&().                                              *
REM ******************************************************************

SUB LMatrixScalarAdd(A&(), B&, C&())
    ARowStart& = LBOUND(A&)
    ARowEnd& = UBOUND(A&)
    AColStart& = LBOUND(A&, 2)
    AColEnd& = UBOUND(A&, 2)
    REDIM C&(ARowStart& TO ARowEnd&, AColStart& TO AColEnd&)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            C&(Row&,Column&) = A&(Row&,Column&) + B&
        NEXT Row&
    NEXT Column&
END SUB        ' | LMatrixScalarAdd

REM ******************************************************************
REM * Matrix subtraction e.g. C&() = A&() - B&().  A&() and B&()    *
REM * must have identical upper and lower bounds.  C&() is REDIM'ed  *
REM * to be the same size.  Each element of C&() is assigned the    *
REM * result of subtracting the equivalent element of B&() from the  *
REM * equivalent element of A&().                                    *
REM ******************************************************************

SUB LMatrixSubtract(A&(), B&(), C&())
    ID$ = "LMatrixSubtract"
    ARowStart& = LBOUND(A&)
    BRowStart& = LBOUND(B&)
    IF ARowStart& <> BRowStart& THEN
        MatrixError ID$, "Lower bounds of A(1) and B(1) not identical!"
    END IF
    ARowEnd& = UBOUND(A&)
    BRowEnd& = UBOUND(B&)
    IF ARowEnd& <> BRowEnd& THEN
        MatrixError ID$, "Upper bounds of A(1) and B(1) not identical!"
    END IF
    AColStart& = LBOUND(A&, 2)
    BColStart& = LBOUND(B&, 2)
    IF AColStart& <> BColStart& THEN
        MatrixError ID$, "Lower bounds of A(2) and B(2) not identical!"
    END IF
    AColEnd& = UBOUND(A&, 2)
    BColEnd& = UBOUND(B&, 2)
    IF ARowEnd& <> BRowEnd& THEN
        MatrixError ID$, "Upper bounds of A(1) and B(1) not identical!"
    END IF
    REDIM C&(ARowStart& TO ARowEnd&, AColStart& TO AColEnd&)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            C&(Row&,Column&) = A&(Row&,Column&) - B&(Row&,Column&)
        NEXT Row&
    NEXT Column&
END SUB        ' | LMatrixSubtract

REM ******************************************************************
REM * Matrix scalar subtraction e.g. C&() = A&() - B&.  C&() is      *
REM * REDIM'ed to be the same size as A&().  Each element of C&() is *
REM * assigned the result of subtracting B& from the equivalent of  *
REM * A&().                                                          *
REM ******************************************************************

SUB LMatrixScalarSubtract(A&(), B&, C&())
    ARowStart& = LBOUND(A&)
    ARowEnd& = UBOUND(A&)
    AColStart& = LBOUND(A&, 2)
    AColEnd& = UBOUND(A&, 2)
    REDIM C&(ARowStart& TO ARowEnd&, AColStart& TO AColEnd&)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            C&(Row&,Column&) = A&(Row&,Column&) - B&
        NEXT Row&
    NEXT Column&
END SUB        ' | LMatrixScalarSubtract

REM ******************************************************************
REM * Matrix multiplication e.g. C&() = A&() * B&().  As such it is  *
REM * easier to direct you to look at the source code for this      *
REM * routine rather than to try to explain it, other than to say    *
REM * that C&() is REDIM'ed according to the standard matrix formula *
REM ******************************************************************

SUB LMatrixMultiply(A&(), B&(), C&())
    ID$ = "LMatrixMultiply"
    ARowStart& = LBOUND(A&)
    BRowStart& = LBOUND(B&)
    IF ARowStart& <> BRowStart& THEN
        MatrixError ID$, "Lower bounds of A(1) and B(1) not identical!"
    END IF
    AColStart& = LBOUND(A&, 2)
    BColStart& = LBOUND(B&, 2)
    IF AColStart& <> BColStart& THEN
        MatrixError ID$, "Lower bounds of A(2) and B(2) not identical!"
    END IF
    BRowEnd& = UBOUND(B&)
    AColEnd& = UBOUND(A&, 2)
    IF AColEnd& <> BRowEnd& THEN
        MatrixError ID$, "Upper bounds of A(2) and B(1) not identical!"
    END IF
    ARowEnd& = UBOUND(A&)
    BColEnd& = UBOUND(B&, 2)
    REDIM C&(ARowStart& TO ARowEnd&, BColStart& TO BColEnd&)
    FOR Row& = ARowStart& TO ARowEnd&
        FOR Column& = BColStart& To BColEnd&
            Sum& = 0
            FOR Z& = AColStart& TO AColEnd&
                Sum& = Sum& + (A&(Row&, Z&) * B&(Z&, Column&))
            NEXT Z&
            C&(Row&,Column&) = Sum&
        NEXT Column&
    NEXT Row&
END SUB        ' | LMatrixMultiply

REM ******************************************************************
REM * Matrix scalar multiplication e.g. C&() = A&() * B&.  C&() is  *
REM * REDIM'ed to be the same size as A&().  Each element of C&() is *
REM * assigned the result of multiplying the equivalent element of  *
REM * A&() by B&.                                                    *
REM ******************************************************************

SUB LMatrixScalarMultiply(A&(), B&, C&())
    ARowStart& = LBOUND(A&)
    AColStart& = LBOUND(A&, 2)
    ARowEnd& = UBOUND(A&)
    AColEnd& = UBOUND(A&, 2)
    REDIM C&(ARowStart& TO ARowEnd&, AColStart& TO AColEnd&)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            C&(Row&,Column&) = A&(Row&,Column&) * B&
        NEXT Row&
    NEXT Column&
END SUB        ' | LMatrixScalarMultiply

REM ******************************************************************
REM * Returns the maximum element contained in A&().                *
REM ******************************************************************

FUNCTION LMatrixMaximum&(A&())
    MyMax& = -2147483648
    ARowStart& = LBOUND(A&)
    ARowEnd& = UBOUND(A&)
    AColStart& = LBOUND(A&, 2)
    AColEnd& = UBOUND(A&, 2)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            IF MyMax& < A&(Row&, Column&) THEN
                MyMax& = A&(Row&,Column&)
            END IF
        NEXT Row&
    NEXT Column&
    LMatrixMaximum& = MyMax&
END FUNCTION    ' | LMatrixMaximum&

REM ******************************************************************
REM * Returns the minimum element contained in A&().                *
REM ******************************************************************

FUNCTION LMatrixMinimum&(A&())
    MyMin& = 2147483647
    ARowStart& = LBOUND(A&)
    ARowEnd& = UBOUND(A&)
    AColStart& = LBOUND(A&, 2)
    AColEnd& = UBOUND(A&, 2)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            IF MyMin& > A&(Row&, Column&) THEN
                MyMin& = A&(Row&,Column&)
            END IF
        NEXT Row&
    NEXT Column&
    LMatrixMinimum& = MyMin&
END FUNCTION    ' | LMatrixMinimum&

Next up _INTEGER64 -

TR
Reply


Messages In This Thread
Huge Matrices Library [Updated] - by TarotRedhand - 05-04-2022, 07:57 AM
RE: Huge Matrices Library - by TarotRedhand - 05-04-2022, 08:02 AM
RE: Huge Matrices Library - by TarotRedhand - 05-04-2022, 08:06 AM
RE: Huge Matrices Library - by TarotRedhand - 05-04-2022, 08:11 AM
RE: Huge Matrices Library - by TarotRedhand - 05-04-2022, 08:15 AM
RE: Huge Matrices Library - by TarotRedhand - 05-04-2022, 08:19 AM
RE: Huge Matrices Library - by TarotRedhand - 05-04-2022, 08:23 AM
RE: Huge Matrices Library - by madscijr - 05-10-2022, 02:37 PM
RE: Huge Matrices Library - by TarotRedhand - 05-17-2022, 11:42 AM



Users browsing this thread: 5 Guest(s)