05-04-2022, 08:06 AM
(This post was last modified: 05-17-2022, 06:26 PM by TarotRedhand.)
This section contains the following public routines -
Actual code -
Next up _INTEGER64 -
TR
Code: (Select All)
' Long Integer
SUB IdentityLMatrix(A&(), MatrixSize&)
SUB ZeroLMatrix(A&())
SUB ConLMatrix(A&())
SUB LMatrixNegate(A&())
SUB LMatrixTransPose(A&(), B&())
SUB LMatrixCopy(This&(), ToThis&())
SUB LMatrixPrint(A&())
SUB LMatrixFilePrint(A&(), FileNumber)
SUB LMatrixInput(A&())
SUB LMatrixFileInput(A&() , FileNum)
SUB LMatrixAdd(A&(), B&(), C&())
SUB LMatrixScalarAdd(A&(), B&, C&())
SUB LMatrixSubtract(A&(), B&(), C&())
SUB LMatrixScalarSubtract(A&(), B&, C&())
SUB LMatrixMultiply(A&(), B&(), C&())
SUB LMatrixScalarMultiply(A&(), B&, C&())
FUNCTION LMatrixMaximum&(A&())
FUNCTION LMatrixMinimum&(A&())
Actual code -
Code: (Select All)
REM ******************************************************************
REM * This library deals with 2 dimensional arrays that are treated *
REM * as though they were mathematical matrices. I have included *
REM * all the routines that are associated with matrices that make *
REM * sense for the various TYPEs that are used. So for integers *
REM * and longs there no routines for mean, variance, inverse or *
REM * determinant. Also for singles and doubles I have left out *
REM * routines for inverse and determinant as their use is very *
REM * limited and specialised. *
REM ******************************************************************
REM ******************************************************************
REM * Private SUB only intended for use by the routines in this *
REM * library. *
REM ******************************************************************
SUB MatrixError(Where$, Fault$)
PRINT "Error in ";Where$;" - ";Fault$
STOP
END SUB ' | MatrixError
REM ******************************************************************
REM * Long Integer Matrices *
REM ******************************************************************
REM ******************************************************************
REM * A&() is REDIM'ed to be a square matrix with MatrixSize& rows *
REM * and MatrixSize& columns. All the elements of A&() are set to *
REM * zero except those where the row and the column are equal which *
REM * are set to one e.g. A&(1,1) = 1, A&(1,2) = 0. *
REM ******************************************************************
SUB IdentityLMatrix(A&(), MatrixSize&)
MatrixSize& = ABS(MatrixSize&)
REDIM A&(1 TO MatrixSize&, 1 TO MatrixSize&)
FOR Column& = 1 TO MatrixSize&
FOR Row& = 1 TO MatrixSize&
IF Row& = Column& THEN
A&(Row&,Column&) = 1
ELSE
A&(Row&,Column&) = 0
END IF
NEXT Row&
NEXT Column&
END SUB ' | IdentityLMatrix
REM ******************************************************************
REM * All the elements of A&() are set to zero. *
REM ******************************************************************
SUB ZeroLMatrix(A&())
ARowStart& = LBOUND(A&)
ARowEnd& = UBOUND(A&)
AColStart& = LBOUND(A&, 2)
AColEnd& = UBOUND(A&, 2)
FOR Column& = AColStart& To AColEnd&
FOR Row& = ARowStart& TO ARowEnd&
A&(Row&,Column&) = 0
NEXT Row&
NEXT Column&
END SUB ' | ZeroLMatrix
REM ******************************************************************
REM * All the elements of A&() are set to one. *
REM ******************************************************************
SUB ConLMatrix(A&())
ARowStart& = LBOUND(A&)
ARowEnd& = UBOUND(A&)
AColStart& = LBOUND(A&, 2)
AColEnd& = UBOUND(A&, 2)
FOR Column& = AColStart& To AColEnd&
FOR Row& = ARowStart& TO ARowEnd&
A&(Row&,Column&) = 1
NEXT Row&
NEXT Column&
END SUB ' | ConLMatrix
REM ******************************************************************
REM * LET A&() = -A&() e.g if A&(1,1) = 5 then after this routine *
REM * A&(1,1) = -5. *
REM ******************************************************************
SUB LMatrixNegate(A&())
ARowStart& = LBOUND(A&)
ARowEnd& = UBOUND(A&)
AColStart& = LBOUND(A&, 2)
AColEnd& = UBOUND(A&, 2)
FOR Column& = AColStart& To AColEnd&
FOR Row& = ARowStart& TO ARowEnd&
A&(Row&,Column&) = -A&(Row&,Column&)
NEXT Row&
NEXT Column&
END SUB ' | LMatrixNegate
REM ******************************************************************
REM * B&() is REDIM'ed to have the same number of columns as A&() *
REM * has rows and to have the same number of rows as A&() has *
REM * columns, and then the rows of A&() are copied to the columns *
REM * of B&(). *
REM ******************************************************************
SUB LMatrixTransPose(A&(), B&())
ARowStart& = LBOUND(A&)
AColStart& = LBOUND(A&, 2)
ARowEnd& = UBOUND(A&)
AColEnd& = UBOUND(A&, 2)
REDIM B&(AColStart& TO AColEnd&, ARowStart& TO ARowEnd&)
FOR P& = AColStart& TO AColEnd&
FOR Q& = ARowStart& TO ARowEnd&
B&(P&, Q&) = A&(Q&, P&)
NEXT Q&
NEXT P&
END SUB ' | LMatrixTransPose
REM ******************************************************************
REM * REDIM's ToThis&() to be the same size as This&() and then *
REM * copies the contents of This&() to ToThis&(). *
REM ******************************************************************
SUB LMatrixCopy(This&(), ToThis&())
RowStart& = LBOUND(This&)
RowFinish& = UBOUND(This&)
ColStart& = LBOUND(This&, 2)
ColFinish& = UBOUND(This&,2)
REDIM ToThis&(RowStart& TO RowFinish&, ColStart& TO ColFinish&)
FOR Column& = ColStart& TO ColFinish&
FOR Row& = RowStart& To RowFinish&
ToThis&(Row&,Column&) = This&(Row&,Column&)
NEXT Row&
NEXT Column&
END SUB ' | LMatrixCopy
REM ******************************************************************
REM * Display the contents of A&() on screen, formatted in columns. *
REM ******************************************************************
SUB LMatrixPrint(A&())
ARowStart& = LBOUND(A&)
ARowEnd& = UBOUND(A&)
AColStart& = LBOUND(A&, 2)
AColEnd& = UBOUND(A&, 2)
FOR Row& = ARowStart& TO ARowEnd&
FOR Column& = AColStart& To AColEnd&
PRINT A&(Row&,Column&);" ";
NEXT Column&
PRINT
NEXT Row&
END SUB ' | LMatrixPrint
REM ******************************************************************
REM * Saves the contents of A&() to the file specified by FileNumber *
REM ******************************************************************
SUB LMatrixFilePrint(A&(), FileNumber)
ARowStart& = LBOUND(A&)
PRINT #FileNumber, ARowStart&;" ";
ARowEnd& = UBOUND(A&)
PRINT #FileNumber, ARowEnd&;" ";
AColStart& = LBOUND(A&, 2)
PRINT #FileNumber, AColStart&;" ";
AColEnd& = UBOUND(A&, 2)
PRINT #FileNumber, AColEnd&;" ";
PRINT #FileNumber,
FOR Row& = ARowStart& TO ARowEnd&
FOR Column& = AColStart& To AColEnd&
PRINT #FileNumber, A&(Row&,Column&);" ";
NEXT Column&
PRINT #FileNumber,
NEXT Row&
END SUB ' | LMatrixFilePrint
REM ******************************************************************
REM * This routine is for the sadists and masochists among you in *
REM * that it inputs all the information necessary to create and *
REM * fill a matrix from the keyboard. *
REM ******************************************************************
SUB LMatrixInput(A&())
INPUT"Lowest subscript for A&(1):",A
INPUT"Highest subscript for A&(1):",B
INPUT"Lowest subscript for A&(2):",C
INPUT"Lowest subscript for A&(2):",D
REDIM A&(A TO B, C TO D)
PRINT
FOR Row& = A TO B
FOR Column& = C TO D
PRINT "Enter value for position ";Row&;", ";Column&;":";
INPUT A
A&(Row&,Column&) = FIX(A)
NEXT Column&
NEXT Row&
END SUB ' | LMatrixInput
REM ******************************************************************
REM * This routine reads all the information necessary to create and *
REM * fill a matrix ( A&() ) from a file specified by filenum. This *
REM * routine is the complement to IMatrixFilePrint and retrieves *
REM * the information in the same order as that routine writes it. *
REM ******************************************************************
SUB LMatrixFileInput(A&() , FileNum)
INPUT #FileNum, A
INPUT #FileNum, B
INPUT #FileNum, C
INPUT #FileNum, D
A = ABS(FIX(A))
B = ABS(FIX(B))
C = ABS(FIX(C))
D = ABS(FIX(D))
REDIM A&(A TO B, C TO D)
FOR Row& = A TO B
FOR Column& = C TO D
INPUT #FileNum, A
A&(Row&,Column&) = FIX(A)
NEXT Column&
NEXT Row&
END SUB ' | LMatrixFileInput
REM ******************************************************************
REM * Matrix addition e.g. C&() = A&() + B&(). A&() and B&() must *
REM * have identical upper and lower bounds. C&() is REDIM'ed to be *
REM * the same size. Each element of C&() is assigned the result of *
REM * adding the equivalent elements in A&() and B&(). *
REM ******************************************************************
SUB LMatrixAdd(A&(), B&(), C&())
ID$ = "LMatrixAdd"
ARowStart& = LBOUND(A&)
BRowStart& = LBOUND(B&)
IF ARowStart& <> BRowStart& THEN
MatrixError ID$, "Lower bounds of A(1) and B(1) not identical!"
END IF
ARowEnd& = UBOUND(A&)
BRowEnd& = UBOUND(B&)
IF ARowEnd& <> BRowEnd& THEN
MatrixError ID$, "Upper bounds of A(1) and B(1) not identical!"
END IF
AColStart& = LBOUND(A&, 2)
BColStart& = LBOUND(B&, 2)
IF AColStart& <> BColStart& THEN
MatrixError ID$, "Lower bounds of A(2) and B(2) not identical!"
END IF
AColEnd& = UBOUND(A&, 2)
BColEnd& = UBOUND(B&, 2)
IF ARowEnd& <> BRowEnd& THEN
MatrixError ID$, "Upper bounds of A(1) and B(1) not identical!"
END IF
REDIM C&(ARowStart& TO ARowEnd&, AColStart& TO AColEnd&)
FOR Column& = AColStart& To AColEnd&
FOR Row& = ARowStart& TO ARowEnd&
C&(Row&,Column&) = A&(Row&,Column&) + B&(Row&,Column&)
NEXT Row&
NEXT Column&
END SUB ' | LMatrixAdd
REM ******************************************************************
REM * Matrix scalar addition e.g. C&() = A&() + B&. C&() is *
REM * REDIM'ed to be identical in size to A&(). Each element of *
REM * C&() is assigned the result of adding B& to the equivalent *
REM * elements in A&(). *
REM ******************************************************************
SUB LMatrixScalarAdd(A&(), B&, C&())
ARowStart& = LBOUND(A&)
ARowEnd& = UBOUND(A&)
AColStart& = LBOUND(A&, 2)
AColEnd& = UBOUND(A&, 2)
REDIM C&(ARowStart& TO ARowEnd&, AColStart& TO AColEnd&)
FOR Column& = AColStart& To AColEnd&
FOR Row& = ARowStart& TO ARowEnd&
C&(Row&,Column&) = A&(Row&,Column&) + B&
NEXT Row&
NEXT Column&
END SUB ' | LMatrixScalarAdd
REM ******************************************************************
REM * Matrix subtraction e.g. C&() = A&() - B&(). A&() and B&() *
REM * must have identical upper and lower bounds. C&() is REDIM'ed *
REM * to be the same size. Each element of C&() is assigned the *
REM * result of subtracting the equivalent element of B&() from the *
REM * equivalent element of A&(). *
REM ******************************************************************
SUB LMatrixSubtract(A&(), B&(), C&())
ID$ = "LMatrixSubtract"
ARowStart& = LBOUND(A&)
BRowStart& = LBOUND(B&)
IF ARowStart& <> BRowStart& THEN
MatrixError ID$, "Lower bounds of A(1) and B(1) not identical!"
END IF
ARowEnd& = UBOUND(A&)
BRowEnd& = UBOUND(B&)
IF ARowEnd& <> BRowEnd& THEN
MatrixError ID$, "Upper bounds of A(1) and B(1) not identical!"
END IF
AColStart& = LBOUND(A&, 2)
BColStart& = LBOUND(B&, 2)
IF AColStart& <> BColStart& THEN
MatrixError ID$, "Lower bounds of A(2) and B(2) not identical!"
END IF
AColEnd& = UBOUND(A&, 2)
BColEnd& = UBOUND(B&, 2)
IF ARowEnd& <> BRowEnd& THEN
MatrixError ID$, "Upper bounds of A(1) and B(1) not identical!"
END IF
REDIM C&(ARowStart& TO ARowEnd&, AColStart& TO AColEnd&)
FOR Column& = AColStart& To AColEnd&
FOR Row& = ARowStart& TO ARowEnd&
C&(Row&,Column&) = A&(Row&,Column&) - B&(Row&,Column&)
NEXT Row&
NEXT Column&
END SUB ' | LMatrixSubtract
REM ******************************************************************
REM * Matrix scalar subtraction e.g. C&() = A&() - B&. C&() is *
REM * REDIM'ed to be the same size as A&(). Each element of C&() is *
REM * assigned the result of subtracting B& from the equivalent of *
REM * A&(). *
REM ******************************************************************
SUB LMatrixScalarSubtract(A&(), B&, C&())
ARowStart& = LBOUND(A&)
ARowEnd& = UBOUND(A&)
AColStart& = LBOUND(A&, 2)
AColEnd& = UBOUND(A&, 2)
REDIM C&(ARowStart& TO ARowEnd&, AColStart& TO AColEnd&)
FOR Column& = AColStart& To AColEnd&
FOR Row& = ARowStart& TO ARowEnd&
C&(Row&,Column&) = A&(Row&,Column&) - B&
NEXT Row&
NEXT Column&
END SUB ' | LMatrixScalarSubtract
REM ******************************************************************
REM * Matrix multiplication e.g. C&() = A&() * B&(). As such it is *
REM * easier to direct you to look at the source code for this *
REM * routine rather than to try to explain it, other than to say *
REM * that C&() is REDIM'ed according to the standard matrix formula *
REM ******************************************************************
SUB LMatrixMultiply(A&(), B&(), C&())
ID$ = "LMatrixMultiply"
ARowStart& = LBOUND(A&)
BRowStart& = LBOUND(B&)
IF ARowStart& <> BRowStart& THEN
MatrixError ID$, "Lower bounds of A(1) and B(1) not identical!"
END IF
AColStart& = LBOUND(A&, 2)
BColStart& = LBOUND(B&, 2)
IF AColStart& <> BColStart& THEN
MatrixError ID$, "Lower bounds of A(2) and B(2) not identical!"
END IF
BRowEnd& = UBOUND(B&)
AColEnd& = UBOUND(A&, 2)
IF AColEnd& <> BRowEnd& THEN
MatrixError ID$, "Upper bounds of A(2) and B(1) not identical!"
END IF
ARowEnd& = UBOUND(A&)
BColEnd& = UBOUND(B&, 2)
REDIM C&(ARowStart& TO ARowEnd&, BColStart& TO BColEnd&)
FOR Row& = ARowStart& TO ARowEnd&
FOR Column& = BColStart& To BColEnd&
Sum& = 0
FOR Z& = AColStart& TO AColEnd&
Sum& = Sum& + (A&(Row&, Z&) * B&(Z&, Column&))
NEXT Z&
C&(Row&,Column&) = Sum&
NEXT Column&
NEXT Row&
END SUB ' | LMatrixMultiply
REM ******************************************************************
REM * Matrix scalar multiplication e.g. C&() = A&() * B&. C&() is *
REM * REDIM'ed to be the same size as A&(). Each element of C&() is *
REM * assigned the result of multiplying the equivalent element of *
REM * A&() by B&. *
REM ******************************************************************
SUB LMatrixScalarMultiply(A&(), B&, C&())
ARowStart& = LBOUND(A&)
AColStart& = LBOUND(A&, 2)
ARowEnd& = UBOUND(A&)
AColEnd& = UBOUND(A&, 2)
REDIM C&(ARowStart& TO ARowEnd&, AColStart& TO AColEnd&)
FOR Column& = AColStart& To AColEnd&
FOR Row& = ARowStart& TO ARowEnd&
C&(Row&,Column&) = A&(Row&,Column&) * B&
NEXT Row&
NEXT Column&
END SUB ' | LMatrixScalarMultiply
REM ******************************************************************
REM * Returns the maximum element contained in A&(). *
REM ******************************************************************
FUNCTION LMatrixMaximum&(A&())
MyMax& = -2147483648
ARowStart& = LBOUND(A&)
ARowEnd& = UBOUND(A&)
AColStart& = LBOUND(A&, 2)
AColEnd& = UBOUND(A&, 2)
FOR Column& = AColStart& To AColEnd&
FOR Row& = ARowStart& TO ARowEnd&
IF MyMax& < A&(Row&, Column&) THEN
MyMax& = A&(Row&,Column&)
END IF
NEXT Row&
NEXT Column&
LMatrixMaximum& = MyMax&
END FUNCTION ' | LMatrixMaximum&
REM ******************************************************************
REM * Returns the minimum element contained in A&(). *
REM ******************************************************************
FUNCTION LMatrixMinimum&(A&())
MyMin& = 2147483647
ARowStart& = LBOUND(A&)
ARowEnd& = UBOUND(A&)
AColStart& = LBOUND(A&, 2)
AColEnd& = UBOUND(A&, 2)
FOR Column& = AColStart& To AColEnd&
FOR Row& = ARowStart& TO ARowEnd&
IF MyMin& > A&(Row&, Column&) THEN
MyMin& = A&(Row&,Column&)
END IF
NEXT Row&
NEXT Column&
LMatrixMinimum& = MyMin&
END FUNCTION ' | LMatrixMinimum&
Next up _INTEGER64 -
TR