Huge Matrices Library [Updated]
#7
The contents of this part are -

Code: (Select All)
' _FLOAT

SUB IdentityFMatrix(A##(), MatrixSize%)
SUB ZeroFMatrix(A##())
SUB ConFMatrix(A##())
SUB FMatrixNegate(A##())
SUB FMatrixTransPose(A##(), B##())
SUB FMatrixCopy(This##(), ToThis##())
SUB FMatrixPrint(A##())
SUB FMatrixFilePrint(A##(), FileNumber)
SUB FMatrixInput(A##())
SUB FMatrixFileInput(A##() , FileNum)
SUB FMatrixAdd(A##(), B##(), C##())
SUB FMatrixScalarAdd(A##(), B##, C##())
SUB FMatrixSubtract(A##(), B##(), C##())
SUB FMatrixScalarSubtract(A##(), B##, C##())
SUB FMatrixMultiply(A##(), B##(), C##())
SUB FMatrixScalarMultiply(A##(), B##, C##())
FUNCTION FMatrixMaximum##(A##())
FUNCTION FMatrixMinimum##(A##())
FUNCTION FMatrixMean##(A##())
FUNCTION FMatrixVariance##(A##())

The code for which is -

Code: (Select All)
REM ******************************************************************
REM * This library deals with 2 dimensional arrays that are treated  *
REM * as though they were mathematical matrices.  I have included    *
REM * all the routines that are associated with matrices that make  *
REM * sense for the various TYPEs that are used.  So for integers    *
REM * and longs there no routines for mean, variance, inverse or    *
REM * determinant.  Also for singles and doubles I have left out    *
REM * routines for inverse and determinant as their use is very      *
REM * limited and specialised.                                      *
REM ******************************************************************

REM ******************************************************************
REM * Private SUB only intended for use by the routines in this      *
REM * library.                                                      *
REM ******************************************************************

SUB MatrixError(Where$, Fault$)
    PRINT "Error in ";Where$;" - ";Fault$
    STOP
END SUB        ' | MatrixError

REM ******************************************************************
REM * _FLOAT floating point Matrices                                *
REM ******************************************************************

REM ******************************************************************
REM * A##() is REDIM'ed to be a square matrix with MatrixSize# rows  *
REM * and MatrixSize# columns.  All the elements of A##() are set to  *
REM * zero except those where the row and the column are equal which *
REM * are set to one e.g. A##(1,1) = 1, A##(1,2) = 0.                  *
REM ******************************************************************

SUB IdentityFMatrix(A##(), MatrixSize&)
    MatrixSize& = ABS(MatrixSize&)
    REDIM A##(1 TO MatrixSize&, 1 TO MatrixSize&)
    FOR Column& = 1 TO MatrixSize&
        FOR Row& = 1 TO MatrixSize&
            IF Row& = Column& THEN
                A##(Row&,Column&) = 1.0
            ELSE
                A##(Row&,Column&) = 0.0
            END IF
        NEXT Row&
    NEXT Column&
END SUB        ' | IdentityFMatrix

REM ******************************************************************
REM * All the elements of A##() are set to zero.                      *
REM ******************************************************************

SUB ZeroFMatrix(A##())
    ARowStart& = LBOUND(A##)
    ARowEnd& = UBOUND(A##)
    AColStart& = LBOUND(A##, 2)
    AColEnd& = UBOUND(A##, 2)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            A##(Row&,Column&) = 0.0
        NEXT Row&
    NEXT Column&
END SUB        ' | ZeroFMatrix

REM ******************************************************************
REM * All the elements of A##() are set to one.                      *
REM ******************************************************************

SUB ConFMatrix(A##())
    ARowStart& = LBOUND(A##)
    ARowEnd& = UBOUND(A##)
    AColStart& = LBOUND(A##, 2)
    AColEnd& = UBOUND(A##, 2)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            A##(Row&,Column&) = 1.0
        NEXT Row&
    NEXT Column&
END SUB        ' | ConFMatrix

REM ******************************************************************
REM * LET A##() = -A##() e.g if A##(1,1) = 5 then after this routine    *
REM * A##(1,1) = -5.                                                  *
REM ******************************************************************

SUB FMatrixNegate(A##())
    ARowStart& = LBOUND(A##)
    ARowEnd& = UBOUND(A##)
    AColStart& = LBOUND(A##, 2)
    AColEnd& = UBOUND(A##, 2)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            A##(Row&,Column&) = -A##(Row&,Column&)
        NEXT Row&
    NEXT Column&
END SUB        ' | FMatrixNegate

REM ******************************************************************
REM * B##() is REDIM'ed to have the same number of columns as A##()    *
REM * has rows and to have the same number of rows as A##() has      *
REM * columns, and then the rows of A##() are copied to the columns  *
REM * of B##().                                                      *
REM ******************************************************************

SUB FMatrixTransPose(A##(), B##())
    ARowStart& = LBOUND(A##)
    AColStart& = LBOUND(A##, 2)
    ARowEnd& = UBOUND(A##)
    AColEnd& = UBOUND(A##, 2)
    REDIM B##(AColStart& TO AColEnd&, ARowStart& TO ARowEnd&)
    FOR P& = AColStart& TO AColEnd&
        FOR Q& = ARowStart& TO ARowEnd&
            B##(P&, Q&) = A##(Q&, P&)
        NEXT Q&
    NEXT P&
END SUB        ' | FMatrixTransPose

REM ******************************************************************
REM * REDIM's ToThis##() to be the same size as This##() and then      *
REM * copies the contents of This##() to ToThis##().                  *
REM ******************************************************************

SUB FMatrixCopy(This##(), ToThis##())
    RowStart& = LBOUND(This##)
    RowFinish& = UBOUND(This##)
    ColStart& = LBOUND(This##, 2)
    ColFinish& = UBOUND(This##,2)
    REDIM ToThis##(RowStart& TO RowFinish&, ColStart& TO ColFinish&)
    FOR Column& = ColStart& TO ColFinish&
        FOR Row& = RowStart& To RowFinish&
            ToThis##(Row&,Column&) = This##(Row&,Column&)
        NEXT Row&
    NEXT Column&
END SUB        ' | FMatrixCopy

REM ******************************************************************
REM * Display the contents of A##() on screen, formatted in columns.  *
REM ******************************************************************

SUB FMatrixPrint(A##())
    ARowStart& = LBOUND(A##)
    ARowEnd& = UBOUND(A##)
    AColStart& = LBOUND(A##, 2)
    AColEnd& = UBOUND(A##, 2)
    FOR Row& = ARowStart& TO ARowEnd&
        FOR Column& = AColStart& To AColEnd&
            PRINT A##(Row&,Column&);" ";
        NEXT Column&
        PRINT
    NEXT Row&
END SUB        ' | FMatrixPrint

REM ******************************************************************
REM * Saves the contents of A##() to the file specified by FileNumber *
REM ******************************************************************

SUB FMatrixFilePrint(A##(), FileNumber)
    ARowStart& = LBOUND(A##)
    PRINT #FileNumber, ARowStart&;" ";
    ARowEnd& = UBOUND(A##)
    PRINT #FileNumber, ARowEnd&;" ";
    AColStart& = LBOUND(A##, 2)
    PRINT #FileNumber, AColStart&;" ";
    AColEnd& = UBOUND(A##, 2)
    PRINT #FileNumber, AColEnd&;" ";
    PRINT #FileNumber,
    FOR Row& = ARowStart& TO ARowEnd&
        FOR Column& = AColStart& To AColEnd&
            PRINT #FileNumber, A##(Row&,Column&);" ";
        NEXT Column&
        PRINT #FileNumber,
    NEXT Row&
END SUB        ' | FMatrixFilePrint

REM ******************************************************************
REM * This routine is for the sadists and masochists among you in    *
REM * that it inputs all the information necessary to create and    *
REM * fill a matrix fromthe keyboard.                                *
REM ******************************************************************

SUB FMatrixInput(A##())
    INPUT"Lowest subscript for A##(1):",A
    INPUT"Highest subscript for A##(1):",B
    INPUT"Lowest subscript for A##(2):",C
    INPUT"Lowest subscript for A##(2):",D
    REDIM A##(A TO B, C TO D)
    PRINT
    FOR Row& = A TO B
        FOR Column& = C TO D
            PRINT "Enter value for position ";Row&;", ";Column&;":";
            INPUT A
            A##(Row&,Column&) = FIX(A)
        NEXT Column&
    NEXT Row&
END SUB        ' | FMatrixInput

REM ******************************************************************
REM * This routine reads all the information necessary to create and *
REM * fill a matrix ( A##() ) from a file specified by filenum.  This *
REM * routine is the complement to IMatrixFilePrint and retrieves    *
REM * the information in the same order as that routine writes it.  *
REM ******************************************************************

SUB FMatrixFileInput(A##() , FileNum)
    INPUT #FileNum, A
    INPUT #FileNum, B
    INPUT #FileNum, C
    INPUT #FileNum, D
    A = ABS(FIX(A))
    B = ABS(FIX(B))
    C = ABS(FIX(C))
    D = ABS(FIX(D))
    REDIM A##(A TO B, C TO D)
    FOR Row& = A TO B
        FOR Column& = C TO D
            INPUT #FileNum, A##(Row&,Column&)
        NEXT Column&
    NEXT Row&
END SUB        ' | FMatrixFileInput

REM ******************************************************************
REM * Matrix addition e.g. C##() = A##() + B##().  A##() and B##() must  *
REM * have identical upper and lower bounds.  C##() is REDIM'ed to be *
REM * the same size.  Each element of C##() is assigned the result of *
REM * adding the equivalent elements in A##() and B##().              *
REM ******************************************************************

SUB FMatrixAdd(A##(), B##(), C##())
    ID$ = "FMatrixAdd"
    ARowStart& = LBOUND(A##)
    BRowStart& = LBOUND(B##)
    IF ARowStart& <> BRowStart& THEN
        MatrixError ID$, "Lower bounds of A(1) and B(1) not identical##"
    END IF
    ARowEnd& = UBOUND(A##)
    BRowEnd& = UBOUND(B##)
    IF ARowEnd& <> BRowEnd& THEN
        MatrixError ID$, "Upper bounds of A(1) and B(1) not identical##"
    END IF
    AColStart& = LBOUND(A##, 2)
    BColStart& = LBOUND(B##, 2)
    IF AColStart& <> BColStart& THEN
        MatrixError ID$, "Lower bounds of A(2) and B(2) not identical##"
    END IF
    AColEnd& = UBOUND(A##, 2)
    BColEnd& = UBOUND(B##, 2)
    IF ARowEnd& <> BRowEnd& THEN
        MatrixError ID$, "Upper bounds of A(1) and B(1) not identical##"
    END IF
    REDIM C##(ARowStart& TO ARowEnd&, AColStart& TO AColEnd&)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            C##(Row&,Column&) = A##(Row&,Column&) + B##(Row&,Column&)
        NEXT Row&
    NEXT Column&
END SUB        ' | FMatrixAdd

REM ******************************************************************
REM * Matrix scalar addition e.g. C##() = A##() + B##.  C##() is        *
REM * REDIM'ed to be identical in size to A##().  Each element of    *
REM * C##() is assigned the result of adding B# to the equivalent    *
REM * elements in A##().                                              *
REM ******************************************************************

SUB FMatrixScalarAdd(A##(), B##, C##())
    ARowStart& = LBOUND(A##)
    ARowEnd& = UBOUND(A##)
    AColStart& = LBOUND(A##, 2)
    AColEnd& = UBOUND(A##, 2)
    REDIM C##(ARowStart& TO ARowEnd&, AColStart& TO AColEnd&)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            C##(Row&,Column&) = A##(Row&,Column&) + B#
        NEXT Row&
    NEXT Column&
END SUB        ' | FMatrixScalarAdd

REM ******************************************************************
REM * Matrix subtraction e.g. C##() = A##() - B##().  A##() and B##()    *
REM * must have identical upper and lower bounds.  C##() is REDIM'ed  *
REM * to be the same size.  Each element of C##() is assigned the    *
REM * result of subtracting the equivalent element of B##() from the  *
REM * equivalent element of A##().                                    *
REM ******************************************************************

SUB FMatrixSubtract(A##(), B##(), C##())
    ID$ = "FMatrixSubtract"
    ARowStart& = LBOUND(A##)
    BRowStart& = LBOUND(B##)
    IF ARowStart& <> BRowStart& THEN
        MatrixError ID$, "Lower bounds of A(1) and B(1) not identical##"
    END IF
    ARowEnd& = UBOUND(A##)
    BRowEnd& = UBOUND(B##)
    IF ARowEnd& <> BRowEnd& THEN
        MatrixError ID$, "Upper bounds of A(1) and B(1) not identical##"
    END IF
    AColStart& = LBOUND(A##, 2)
    BColStart& = LBOUND(B##, 2)
    IF AColStart& <> BColStart& THEN
        MatrixError ID$, "Lower bounds of A(2) and B(2) not identical##"
    END IF
    AColEnd& = UBOUND(A##, 2)
    BColEnd& = UBOUND(B##, 2)
    IF ARowEnd& <> BRowEnd& THEN
        MatrixError ID$, "Upper bounds of A(1) and B(1) not identical##"
    END IF
    REDIM C##(ARowStart& TO ARowEnd&, AColStart& TO AColEnd&)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            C##(Row&,Column&) = A##(Row&,Column&) - B##(Row&,Column&)
        NEXT Row&
    NEXT Column&
END SUB        ' | FMatrixSubtract

REM ******************************************************************
REM * Matrix scalar subtraction e.g. C##() = A##() - B##.  C##() is      *
REM * REDIM'ed to be the same size as A##().  Each element of C##() is *
REM * assigned the result of subtracting B# from the equivalent of  *
REM * A##().                                                          *
REM ******************************************************************

SUB FMatrixScalarSubtract(A##(), B##, C##())
    ARowStart& = LBOUND(A##)
    ARowEnd& = UBOUND(A##)
    AColStart& = LBOUND(A##, 2)
    AColEnd& = UBOUND(A##, 2)
    REDIM C##(ARowStart& TO ARowEnd&, AColStart& TO AColEnd&)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            C##(Row&,Column&) = A##(Row&,Column&) - B#
        NEXT Row&
    NEXT Column&
END SUB        ' | FMatrixScalarSubtract

REM ******************************************************************
REM * Matrix multiplication e.g. C##() = A##() * B##().  As such it is  *
REM * easier to direct you to look at the source code for this      *
REM * routine rather than to try to explain it, other than to say    *
REM * that C##() is REDIM'ed according to the standard matrix formula *
REM ******************************************************************

SUB FMatrixMultiply(A##(), B##(), C##())
    ID$ = "FMatrixMultiply"
    ARowStart& = LBOUND(A##)
    BRowStart& = LBOUND(B##)
    IF ARowStart& <> BRowStart& THEN
        MatrixError ID$, "Lower bounds of A(1) and B(1) not identical##"
    END IF
    AColStart& = LBOUND(A##, 2)
    BColStart& = LBOUND(B##, 2)
    IF AColStart& <> BColStart& THEN
        MatrixError ID$, "Lower bounds of A(2) and B(2) not identical##"
    END IF
    BRowEnd& = UBOUND(B##)
    AColEnd& = UBOUND(A##, 2)
    IF AColEnd& <> BRowEnd& THEN
        MatrixError ID$, "Upper bounds of A(2) and B(1) not identical##"
    END IF
    ARowEnd& = UBOUND(A##)
    BColEnd& = UBOUND(B##, 2)
    REDIM C##(ARowStart& TO ARowEnd&, BColStart& TO BColEnd&)
    FOR Row& = ARowStart& TO ARowEnd&
        FOR Column& = BColStart& To BColEnd&
            Sum## = 0.0
            FOR Z& = AColStart& TO AColEnd&
                Sum## = Sum## + (A##(Row&, Z&) * B##(Z&, Column&))
            NEXT Z&
            C##(Row&,Column&) = Sum##
        NEXT Column&
    NEXT Row&
END SUB        ' | FMatrixMultiply

REM ******************************************************************
REM * Matrix scalar multiplication e.g. C##() = A##() * B##.  C##() is  *
REM * REDIM'ed to be the same size as A##().  Each element of C##() is *
REM * assigned the result of multiplying the equivalent element of  *
REM * A##() by B##.                                                    *
REM ******************************************************************

SUB FMatrixScalarMultiply(A##(), B##, C##())
    ARowStart& = LBOUND(A##)
    AColStart& = LBOUND(A##, 2)
    ARowEnd& = UBOUND(A##)
    AColEnd& = UBOUND(A##, 2)
    REDIM C##(ARowStart& TO ARowEnd&, AColStart& TO AColEnd&)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            C##(Row&,Column&) = A##(Row&,Column&) * B#
        NEXT Row&
    NEXT Column&
END SUB        ' | FMatrixScalarMultiply

REM ******************************************************************
REM * Returns the maximum element contained in A##().                *
REM ******************************************************************

FUNCTION FMatrixMaximum##(A##())
    MyMax## = -1.18E-4932
    ARowStart& = LBOUND(A##)
    ARowEnd& = UBOUND(A##)
    AColStart& = LBOUND(A##, 2)
    AColEnd& = UBOUND(A##, 2)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            IF MyMax## < A##(Row&, Column&) THEN
                MyMax## = A##(Row&,Column&)
            END IF
        NEXT Row&
    NEXT Column&
    FMatrixMaximum## = MyMax##
END FUNCTION    ' | FMatrixMaximum##

REM ******************************************************************
REM * Returns the minimum element contained in A##().                *
REM ******************************************************************

FUNCTION FMatrixMinimum##(A##())
    MyMin## = 1.18E+4932
    ARowStart& = LBOUND(A##)
    ARowEnd& = UBOUND(A##)
    AColStart& = LBOUND(A##, 2)
    AColEnd& = UBOUND(A##, 2)
    FOR Column& = AColStart& To AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            IF MyMin## > A##(Row&, Column&) THEN
                MyMin## = A##(Row&,Column&)
            END IF
        NEXT Row&
    NEXT Column&
    FMatrixMinimum## = MyMin##
END FUNCTION    ' | FMatrixMinimum##

REM ******************************************************************
REM * Returns the Average of all the values contained in A##().      *
REM ******************************************************************

FUNCTION FMatrixMean##(A##())
    Sum## = 0.0
    ARowStart& = LBOUND(A##)
    AColStart& = LBOUND(A##, 2)
    ARowEnd& = UBOUND(A##)
    AColEnd& = UBOUND(A##, 2)
    FOR Column& = AColStart& TO AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            Sum## = Sum## + A##(Row&,Column&)
        NEXT Row&
    NEXT Column&
    MatrixSize## = (1.0 + ARowEnd& - ARowStart&) * (1.0 + AColEnd& - AColStart&)
    FMatrixMean## = Sum## / MatrixSize##
END FUNCTION    ' | FMatrixMean##

REM ******************************************************************
REM * Returns the variance of all the values contained in A##().      *
REM ******************************************************************

FUNCTION FMatrixVariance##(A##())
    SumSquared## = 0.0
    MyMean## = FMatrixMean##(A##())
    ARowStart& = LBOUND(A##)
    AColStart& = LBOUND(A##, 2)
    ARowEnd& = UBOUND(A##)
    AColEnd& = UBOUND(A##, 2)
    FOR Column& = AColStart& TO AColEnd&
        FOR Row& = ARowStart& TO ARowEnd&
            Temp## = A##(Row&,Column&) - MyMean##
            Temp## = Temp## * Temp##
            SumSquared## = SumSquared## + Temp##
        NEXT Row&
    NEXT Column&
    MatrixSize## = (1.0 + ARowEnd& - ARowStart&) * (1.0 + AColEnd& - AColStart&)
    FMatrixVariance## = SumSquared## / (MatrixSize## - 1.0)
END FUNCTION    ' | FMatrixVariance##

And that's it.

TR
Reply


Messages In This Thread
Huge Matrices Library [Updated] - by TarotRedhand - 05-04-2022, 07:57 AM
RE: Huge Matrices Library - by TarotRedhand - 05-04-2022, 08:02 AM
RE: Huge Matrices Library - by TarotRedhand - 05-04-2022, 08:06 AM
RE: Huge Matrices Library - by TarotRedhand - 05-04-2022, 08:11 AM
RE: Huge Matrices Library - by TarotRedhand - 05-04-2022, 08:15 AM
RE: Huge Matrices Library - by TarotRedhand - 05-04-2022, 08:19 AM
RE: Huge Matrices Library - by TarotRedhand - 05-04-2022, 08:23 AM
RE: Huge Matrices Library - by madscijr - 05-10-2022, 02:37 PM
RE: Huge Matrices Library - by TarotRedhand - 05-17-2022, 11:42 AM



Users browsing this thread: 2 Guest(s)