Calculations Needing Big Integers.... - Space_Ghost - 07-09-2023
Does QB64pe have the capability for Big Integers?
Below I pasted python (P3) code that calculates the first 5,000 Fibonacci numbers as shown. Takes about 1 second. It automatically uses Big Integers with no adjustment.
Can we do something similar with QB64pe? I would guess there is at least one or more ways to run a similar calculation. Thanks in advance !!!
Python Code for Fibonacci Sequence
def fibIter(n):
if n < 2:
return n
fibPrev = 1
fib = 1
for _ in range(2, n):
fibPrev, fib = fib, fib + fibPrev
return fib
for i in range(0, 5000):
print(fibIter(i))
This is the 5000th Fibonacci Number (it has 1,045 digits) I skipped 1 to 4,999.
2397334346100631452333336800023778743396400988090212332865227234032387117767626167465060795065595580850691237390963845987165478074085124644348902530685083246709423858342692329718110162972268152200857232686119638781547238020078362945470777668711057069618425746387920931255084621360135655698456629322111614827324455767748623844363426260372374195153577101298837831208580530677289982029527164306876024342838547454228388796380077029917639469963653048076473269452943584037848773158456736367057460079075603072996653089318046279296240100777360367200040226807430924334616931577257195085793060133817911514540227011756335999604550121968663793604830945238116686325506344893928776515696088851468818023735825546502317562957459506612704850760351077006532507519813600498603205937022956740021970327599548184626715032015801445754074519753924901317605013561516613650173445818028242577356369143977719495739428130191089993769093308407443558168431535751910046557480949313497996285124526992631353143367314930548703966553707195171094152730704138121243470432644848607501
RE: Calculations Needing Big Integers.... - TerryRitchie - 07-09-2023
Here is the function converted to QB64 using an unsigned _INTEGER64. Of course it breaks down at the upper limit of _INTEGER64. Interesting coding challenge. Thoughts anyone?
Code: (Select All)
FOR i = 1 TO 100
_LIMIT 10
PRINT fibIter(i)
NEXT i
FUNCTION fibIter~&& (n)
IF n < 2 THEN
fibIter = n
ELSE
fibPrev = 1
fib = 1
FOR i = 2 TO n - 1
fibPrevTemp = fib
fib = fib + fibPrev
fibPrev = fibPrevTemp
NEXT i
fibIter = fib
END IF
END FUNCTION
RE: Calculations Needing Big Integers.... - Jack - 07-09-2023
Space_Ghost
what OS are you using?
if you are using Windows x64 then here's TerryRitchie's example converted to use LibTomath https://staging.qb64phoenix.com/showthread.php?tid=31
Code: (Select All)
_Title "Fibonacci"
$Console:Only
_Dest _Console
'$include: 'LibTomMath.bi'
Dim As mp_int fibIter
Dim As Long i, ok
Dim As Double t
t = Timer(.0001)
If mp_init(fibIter) <> 0 Then Print "failed to initialize"
For i = 1 To 5000 - 1
fibonacci fibIter, i
Print i, mp_str(fibIter, 10)
Next i
t = Timer(.0001) - t
Print "elapsed time - "; t; " seconds"
mp_clear fibIter
Sub fibonacci (f As mp_int, n As Long)
Dim As Long i
Dim As mp_int fib, fibPrev, fibPrevTemp
If mp_init(fib) <> 0 Then Print "failed to initialize"
If mp_init(fibPrev) <> 0 Then Print "failed to initialize"
If mp_init(fibPrevTemp) <> 0 Then Print "failed to initialize"
If n < 2 Then
mp_set_i32 f, n
Else
mp_set_i32 fibPrev, 1
mp_set_i32 fib, 1
For i = 2 To n - 1
ok = mp_copy(fib, fibPrevTemp)
ok = mp_add&(fibPrev, fib, fib)
ok = mp_copy(fibPrevTemp, fibPrev)
Next i
ok = mp_copy(fib, f)
mp_clear fibPrevTemp
mp_clear fibPrev
mp_clear fib
End If
End Sub
'$include: 'LibTomMath.bm'
LibTomMath.bi (Size: 12.99 KB / Downloads: 57)
LibTomMath.bm (Size: 636 bytes / Downloads: 49)
libtommath.zip (Size: 59.37 KB / Downloads: 15)
RE: Calculations Needing Big Integers.... - Jack - 07-09-2023
also for Windows x64 you can use pari https://staging.qb64phoenix.com/showthread.php?tid=536
Code: (Select All)
_Title "libpari-fib-demo"
$Console:Only
_Dest _Console
Declare Dynamic Library "libpari"
Sub pari_init (ByVal parisize~&&, Byval maxprime~&&)
Sub pari_close ()
Sub pari_print_version ()
Function setdefault~&& (s As String, v As String, Byval flag&&)
Function strtoGENstr~&& (s As String)
Function setrealprecision&& (ByVal n&&, prec&&)
Function GENtostr$ (ByVal x~&&)
Function geval~&& (ByVal x~&&)
Sub outmat (ByVal x~&&)
Function gp_input~&& ()
Function stoi~&& (ByVal x&&)
Function abscmpiu& (ByVal x~&&, Byval y As _Unsigned _Integer64)
Function abscmpui& (ByVal x As _Unsigned _Integer64, Byval y~&&)
Function absequaliu& (ByVal x~&&, Byval y As _Unsigned _Integer64)
Function gequal& (ByVal x~&&, Byval y~&&)
Function gcmp& (ByVal x~&&, Byval y~&&)
End Declare
Dim As _Unsigned _Integer64 a, b, c, d, e, f
Dim As String s1, s2, s3
Dim As _Integer64 flag, prec
pari_init 80000000, 500000
'pari_print_version
Print
s1 = "fibonacci(5000)" + Chr$(0)
a = strtoGENstr(s1) 'convert to GEN string
b = geval(a) 'eval the string in a
'outmat b
s3 = GENtostr(b)
Print "fibonacci(5000) = "; s3
pari_close
RE: Calculations Needing Big Integers.... - david_uwi - 07-09-2023
Using arrays and carries is quite quick... Might be even quicker using LONG integers in the array.
There is also some problems with type conversions.
Does INTEGER to LONG conversion slow things down?
Anyway it is much quicker than using strings.
Code: (Select All) Cls
Dim a(30000) As Integer, b(30000) As Integer
DefLng F-I
DefInt J-N
Input "input the fibonacci number to calculate"; fmax
tt = Timer
b(1) = 1: n = 1
For i = 1 To (fmax + 1) \ 2
For j = 1 To n
b(j) = a(j) + b(j) + jc
If b(j) > 9999 Then b(j) = b(j) - 10000: jc = 1 Else jc = 0
Next j
If jc = 1 Then n = n + 1: b(n) = 1: jc = 0
For j = 1 To n
a(j) = a(j) + b(j) + jc
If a(j) > 9999 Then a(j) = a(j) - 10000: jc = 1 Else jc = 0
Next j
If jc = 1 Then n = n + 1: a(n) = 1: jc = 0
Next i
For j = n To 1 Step -1
If fmax Mod 2 = 0 Then
If j = n Then t$ = LTrim$(Str$(a(j))) Else t$ = Right$("0000" + LTrim$(Str$(a(j))), 4)
Print Using "&"; t$;
End If
If fmax Mod 2 = 1 Then
If j = n Then t$ = LTrim$(Str$(b(j))) Else t$ = Right$("0000" + LTrim$(Str$(b(j))), 4)
Print Using "&"; t$;
End If
Next j
Print: Print "number of digits = ";
If fmax Mod 2 = 1 Then Print (n - 1) * 4 + Len(LTrim$(Str$(a(n))))
If fmax Mod 2 = 0 Then Print (n - 1) * 4 + Len(LTrim$(Str$(b(n))))
Print "TIME TAKEN= "; Timer - tt; "SECONDS"
End
RE: Calculations Needing Big Integers.... - Space_Ghost - 07-09-2023
Thank you to Terry, Jack, and David !!!
Jack, per your question, I am using:- Windows 11 Pro, x64-based PC
- Version 10.0 Build 22621
- Intel Core i7 w/6 cores and 12 Logical Processors
- 16 GB RAM
It is amazing how fast you all came up with options. I am fading fast right now...but will try all of these in the a.m.
Again, thanks for the great and professional feedback! This is a very interesting and useful item if we can get it to work in a general manner.
Cheers
RE: Calculations Needing Big Integers.... - SMcNeill - 07-09-2023
Code: (Select All)
Screen _NewImage(1280, 720, 32)
Limit = 10000
Print "Fib"; Limit; "="
last2$ = "0"
last$ = "1"
time## = Timer
For i = 1 To Limit - 2
result$ = StringAdd(last$, last2$)
last2$ = last$
last$ = result$
Next
Print result$
Print Using "###.### seconds to run."; Timer - time##
End
Function StringAdd$ (tempa$, tempb$)
a$ = tempa$: b$ = tempb$ 'don't alter our original numbers
Dim As _Unsigned _Integer64 a, b, c, carryover 'to hold our values
'first fix the numbers to notmalize their lengths
FixNumbers a$, b$
'find the signs and strip them off
If Left$(a$, 1) = "-" Then sa$ = "-": a$ = Mid$(a$, 2) Else sa$ = " "
If Left$(b$, 1) = "-" Then sb$ = "-": b$ = Mid$(b$, 2) Else sb$ = " "
'find the decimal position
dp = InStr(a$, ".")
If dp > 0 Then 'remove the decimal place from our numbers. We can put it back later, in its proper position
righta$ = Mid$(a$, dp + 1)
rightb$ = Mid$(b$, dp + 1)
a$ = Left$(a$, dp - 1) + righta$
b$ = Left$(b$, dp - 1) + rightb$
End If
'our strings are now nothing but numbers with no signs and no decimals to deal with. Let's start adding!
'are we adding or really subtracting?
If sa$ <> sb$ Then 'we're subtracting the two values if the signs aren't the same.
Select Case a$
Case Is < b$: s$ = sb$: Swap a$, b$ 'our sign is going to be determiined by b$
Case Is = b$ 'if the two values are the same and are subtracting, our result is zero!
StringAdd$ = "0" 'How easy was that?
Exit Function
Case Else: s$ = sa$ 'our sign is determined by a$
End Select
Do
lb = Len(b$)
a = Val(Right$(a$, 18)): a$ = Left$(a$, Len(a$) - 18)
b = Val(Right$(b$, 18)): b$ = Left$(b$, Len(b$) - 18)
If borrow Then b = b + 1~&& 'in case we had to borrow a digit for the last subtraction
If a < b Then
If lb < 18 Then a = a + 10 ^ lb Else a = a + 10 ^ 18
borrow = -1
Else
borrow = 0
End If
c = a - b
temp$ = _Trim$(Str$(c))
answer$ = String$(18 - Len(temp$), "0") + temp$ + answer$
Loop Until Len(a$) = 0
'remove leading 0's
Do Until Left$(answer$, 1) <> "0"
answer$ = Mid$(answer$, 2)
Loop
'remember to add in the decimal place before finished
dp = Len(righta$)
If dp > 0 Then
answer$ = Left$(answer$, Len(answer$) - dp) + "." + Right$(answer$, dp)
End If
StringAdd$ = s$ + answer$
Exit Function
End If
Do
a1$ = Right$(a$, 18)
b1$ = Right$(b$, 18)
a = Val(Right$(a$, 18)): a$ = Left$(a$, Len(a$) - 18)
b = Val(Right$(b$, 18)): b$ = Left$(b$, Len(b$) - 18)
c = a + b + carryover
temp$ = _Trim$(Str$(c))
If Len(temp$) > 18 Then 'see if we have an answer that is more than 18 digits
temp$ = Right$(temp$, 18) 'keep 18 digits
carryover = 1 'store one for carry over
Else
carryover = 0 'no carryover
End If
answer$ = String$(18 - Len(temp$), "0") + temp$ + answer$
Loop Until Len(a$) = 0
If carryover Then answer$ = "1" + answer$
'remember to add in the decimal place before finished
dp = Len(righta$)
If dp > 0 Then
answer$ = Left$(answer$, Len(answer$) - dp) + "." + Right$(answer$, dp)
End If
'remove leading 0's
Do Until Left$(answer$, 1) <> "0"
answer$ = Mid$(answer$, 2)
Loop
StringAdd$ = sa$ + answer$
End Function
Function StringSubtract$ (tempa$, tempb$)
a$ = tempa$: b$ = tempb$
FixNumbers a$, b$
If Left$(b$, 1) = "-" Then b$ = Mid$(b$, 2) Else b$ = "-" + b$
StringSubtract$ = StringAdd$(a$, b$)
End Function
Sub FixNumbers (a$, b$)
'first remove scientific notation and spaces from both
a$ = _Trim$(N2S$(a$)): b$ = _Trim$(N2S$(b$))
'then find the decimal position for both and normalize the expressions
d1 = InStr(a$, "."): d2 = InStr(b$, ".")
If d1 <> 0 Then 'break down the left and right side of the decimal point for ease of processing (this is a$)
lefta$ = Left$(a$, d1 - 1)
righta$ = Mid$(a$, d1)
Else
lefta$ = a$
End If
If d2 <> 0 Then 'break down the left and right side of the decimal point for ease of processing (this is b$)
leftb$ = Left$(b$, d2 - 1)
rightb$ = Mid$(b$, d2)
Else
leftb$ = b$
End If
'normalize the right side of our expressions
l1 = Len(righta$): l2 = Len(rightb$)
If l1 < l2 Then
addzero = l2 - l1
If l1 = 0 Then righta$ = ".": addzero = addzero - 1
righta$ = righta$ + String$(addzero, "0")
ElseIf l1 > l2 Then
addzero = l1 - l2
'If l2 = 0 Then rightb$ = ".": addzero = addzero - 1
rightb$ = rightb$ + String$(addzero, "0")
End If
'strip off any plus/minus signs from the two numbers.
If Left$(lefta$, 1) = "-" Then signa$ = "-": lefta$ = Mid$(lefta$, 2)
If Left$(leftb$, 1) = "-" Then signb$ = "-": leftb$ = Mid$(leftb$, 2)
If Left$(lefta$, 1) = "+" Then signa$ = "": lefta$ = Mid$(lefta$, 2)
If Left$(leftb$, 1) = "+" Then signb$ = "": leftb$ = Mid$(leftb$, 2)
'normalize the left side of our expressions
l1 = Len(lefta$): l2 = Len(leftb$)
If l1 < l2 Then
addzero = l2 - l1
lefta$ = String$(addzero, "0") + lefta$
ElseIf l1 > l2 Then
addzero = l1 - l2
leftb$ = String$(addzero, "0") + leftb$
End If
'and then put it all together
a$ = signa$ + lefta$ + righta$
b$ = signb$ + leftb$ + rightb$
End Sub
Function N2S$ (exp$) 'scientific Notation to String
t$ = LTrim$(RTrim$(exp$))
If Left$(t$, 1) = "-" Or Left$(t$, 1) = "N" Then sign$ = "-": t$ = Mid$(t$, 2)
dp = InStr(t$, "D+"): dm = InStr(t$, "D-")
ep = InStr(t$, "E+"): em = InStr(t$, "E-")
check1 = Sgn(dp) + Sgn(dm) + Sgn(ep) + Sgn(em)
If check1 < 1 Or check1 > 1 Then N2S = exp$: Exit Function 'If no scientic notation is found, or if we find more than 1 type, it's not SN!
Select Case l 'l now tells us where the SN starts at.
Case Is < dp: l = dp
Case Is < dm: l = dm
Case Is < ep: l = ep
Case Is < em: l = em
End Select
l$ = Left$(t$, l - 1) 'The left of the SN
r$ = Mid$(t$, l + 1): r&& = Val(r$) 'The right of the SN, turned into a workable long
If InStr(l$, ".") Then 'Location of the decimal, if any
If r&& > 0 Then
r&& = r&& - Len(l$) + 2
Else
r&& = r&& + 1
End If
l$ = Left$(l$, 1) + Mid$(l$, 3)
End If
Select Case r&&
Case 0 'what the heck? We solved it already?
'l$ = l$
Case Is < 0
For i = 1 To -r&&
l$ = "0" + l$
Next
l$ = "0." + l$
Case Else
For i = 1 To r&&
l$ = l$ + "0"
Next
End Select
N2S$ = sign$ + l$
End Function
Function DWD$ (exp$) 'Deal With Duplicates
'To deal with duplicate operators in our code.
'Such as -- becomes a +
'++ becomes a +
'+- becomes a -
'-+ becomes a -
t$ = exp$
Do
bad = 0
Do
l = InStr(t$, "++")
If l Then t$ = Left$(t$, l - 1) + "+" + Mid$(t$, l + 2): bad = -1
Loop Until l = 0
Do
l = InStr(t$, "+-")
If l Then t$ = Left$(t$, l - 1) + "-" + Mid$(t$, l + 2): bad = -1
Loop Until l = 0
Do
l = InStr(t$, "-+")
If l Then t$ = Left$(t$, l - 1) + "-" + Mid$(t$, l + 2): bad = -1
Loop Until l = 0
Do
l = InStr(t$, "--")
If l Then t$ = Left$(t$, l - 1) + "+" + Mid$(t$, l + 2): bad = -1
Loop Until l = 0
Loop Until Not bad
DWD$ = t$
End Function
RE: Calculations Needing Big Integers.... - TerryRitchie - 07-09-2023
(07-09-2023, 02:20 PM)SMcNeill Wrote: Code: (Select All)
Screen _NewImage(1280, 720, 32)
Limit = 10000
Print "Fib"; Limit; "="
last2$ = "0"
last$ = "1"
time## = Timer
For i = 1 To Limit - 2
result$ = StringAdd(last$, last2$)
last2$ = last$
last$ = result$
Next
Print result$
Print Using "###.### seconds to run."; Timer - time##
End
Function StringAdd$ (tempa$, tempb$)
a$ = tempa$: b$ = tempb$ 'don't alter our original numbers
Dim As _Unsigned _Integer64 a, b, c, carryover 'to hold our values
'first fix the numbers to notmalize their lengths
FixNumbers a$, b$
'find the signs and strip them off
If Left$(a$, 1) = "-" Then sa$ = "-": a$ = Mid$(a$, 2) Else sa$ = " "
If Left$(b$, 1) = "-" Then sb$ = "-": b$ = Mid$(b$, 2) Else sb$ = " "
'find the decimal position
dp = InStr(a$, ".")
If dp > 0 Then 'remove the decimal place from our numbers. We can put it back later, in its proper position
righta$ = Mid$(a$, dp + 1)
rightb$ = Mid$(b$, dp + 1)
a$ = Left$(a$, dp - 1) + righta$
b$ = Left$(b$, dp - 1) + rightb$
End If
'our strings are now nothing but numbers with no signs and no decimals to deal with. Let's start adding!
'are we adding or really subtracting?
If sa$ <> sb$ Then 'we're subtracting the two values if the signs aren't the same.
Select Case a$
Case Is < b$: s$ = sb$: Swap a$, b$ 'our sign is going to be determiined by b$
Case Is = b$ 'if the two values are the same and are subtracting, our result is zero!
StringAdd$ = "0" 'How easy was that?
Exit Function
Case Else: s$ = sa$ 'our sign is determined by a$
End Select
Do
lb = Len(b$)
a = Val(Right$(a$, 18)): a$ = Left$(a$, Len(a$) - 18)
b = Val(Right$(b$, 18)): b$ = Left$(b$, Len(b$) - 18)
If borrow Then b = b + 1~&& 'in case we had to borrow a digit for the last subtraction
If a < b Then
If lb < 18 Then a = a + 10 ^ lb Else a = a + 10 ^ 18
borrow = -1
Else
borrow = 0
End If
c = a - b
temp$ = _Trim$(Str$(c))
answer$ = String$(18 - Len(temp$), "0") + temp$ + answer$
Loop Until Len(a$) = 0
'remove leading 0's
Do Until Left$(answer$, 1) <> "0"
answer$ = Mid$(answer$, 2)
Loop
'remember to add in the decimal place before finished
dp = Len(righta$)
If dp > 0 Then
answer$ = Left$(answer$, Len(answer$) - dp) + "." + Right$(answer$, dp)
End If
StringAdd$ = s$ + answer$
Exit Function
End If
Do
a1$ = Right$(a$, 18)
b1$ = Right$(b$, 18)
a = Val(Right$(a$, 18)): a$ = Left$(a$, Len(a$) - 18)
b = Val(Right$(b$, 18)): b$ = Left$(b$, Len(b$) - 18)
c = a + b + carryover
temp$ = _Trim$(Str$(c))
If Len(temp$) > 18 Then 'see if we have an answer that is more than 18 digits
temp$ = Right$(temp$, 18) 'keep 18 digits
carryover = 1 'store one for carry over
Else
carryover = 0 'no carryover
End If
answer$ = String$(18 - Len(temp$), "0") + temp$ + answer$
Loop Until Len(a$) = 0
If carryover Then answer$ = "1" + answer$
'remember to add in the decimal place before finished
dp = Len(righta$)
If dp > 0 Then
answer$ = Left$(answer$, Len(answer$) - dp) + "." + Right$(answer$, dp)
End If
'remove leading 0's
Do Until Left$(answer$, 1) <> "0"
answer$ = Mid$(answer$, 2)
Loop
StringAdd$ = sa$ + answer$
End Function
Function StringSubtract$ (tempa$, tempb$)
a$ = tempa$: b$ = tempb$
FixNumbers a$, b$
If Left$(b$, 1) = "-" Then b$ = Mid$(b$, 2) Else b$ = "-" + b$
StringSubtract$ = StringAdd$(a$, b$)
End Function
Sub FixNumbers (a$, b$)
'first remove scientific notation and spaces from both
a$ = _Trim$(N2S$(a$)): b$ = _Trim$(N2S$(b$))
'then find the decimal position for both and normalize the expressions
d1 = InStr(a$, "."): d2 = InStr(b$, ".")
If d1 <> 0 Then 'break down the left and right side of the decimal point for ease of processing (this is a$)
lefta$ = Left$(a$, d1 - 1)
righta$ = Mid$(a$, d1)
Else
lefta$ = a$
End If
If d2 <> 0 Then 'break down the left and right side of the decimal point for ease of processing (this is b$)
leftb$ = Left$(b$, d2 - 1)
rightb$ = Mid$(b$, d2)
Else
leftb$ = b$
End If
'normalize the right side of our expressions
l1 = Len(righta$): l2 = Len(rightb$)
If l1 < l2 Then
addzero = l2 - l1
If l1 = 0 Then righta$ = ".": addzero = addzero - 1
righta$ = righta$ + String$(addzero, "0")
ElseIf l1 > l2 Then
addzero = l1 - l2
'If l2 = 0 Then rightb$ = ".": addzero = addzero - 1
rightb$ = rightb$ + String$(addzero, "0")
End If
'strip off any plus/minus signs from the two numbers.
If Left$(lefta$, 1) = "-" Then signa$ = "-": lefta$ = Mid$(lefta$, 2)
If Left$(leftb$, 1) = "-" Then signb$ = "-": leftb$ = Mid$(leftb$, 2)
If Left$(lefta$, 1) = "+" Then signa$ = "": lefta$ = Mid$(lefta$, 2)
If Left$(leftb$, 1) = "+" Then signb$ = "": leftb$ = Mid$(leftb$, 2)
'normalize the left side of our expressions
l1 = Len(lefta$): l2 = Len(leftb$)
If l1 < l2 Then
addzero = l2 - l1
lefta$ = String$(addzero, "0") + lefta$
ElseIf l1 > l2 Then
addzero = l1 - l2
leftb$ = String$(addzero, "0") + leftb$
End If
'and then put it all together
a$ = signa$ + lefta$ + righta$
b$ = signb$ + leftb$ + rightb$
End Sub
Function N2S$ (exp$) 'scientific Notation to String
t$ = LTrim$(RTrim$(exp$))
If Left$(t$, 1) = "-" Or Left$(t$, 1) = "N" Then sign$ = "-": t$ = Mid$(t$, 2)
dp = InStr(t$, "D+"): dm = InStr(t$, "D-")
ep = InStr(t$, "E+"): em = InStr(t$, "E-")
check1 = Sgn(dp) + Sgn(dm) + Sgn(ep) + Sgn(em)
If check1 < 1 Or check1 > 1 Then N2S = exp$: Exit Function 'If no scientic notation is found, or if we find more than 1 type, it's not SN!
Select Case l 'l now tells us where the SN starts at.
Case Is < dp: l = dp
Case Is < dm: l = dm
Case Is < ep: l = ep
Case Is < em: l = em
End Select
l$ = Left$(t$, l - 1) 'The left of the SN
r$ = Mid$(t$, l + 1): r&& = Val(r$) 'The right of the SN, turned into a workable long
If InStr(l$, ".") Then 'Location of the decimal, if any
If r&& > 0 Then
r&& = r&& - Len(l$) + 2
Else
r&& = r&& + 1
End If
l$ = Left$(l$, 1) + Mid$(l$, 3)
End If
Select Case r&&
Case 0 'what the heck? We solved it already?
'l$ = l$
Case Is < 0
For i = 1 To -r&&
l$ = "0" + l$
Next
l$ = "0." + l$
Case Else
For i = 1 To r&&
l$ = l$ + "0"
Next
End Select
N2S$ = sign$ + l$
End Function
Function DWD$ (exp$) 'Deal With Duplicates
'To deal with duplicate operators in our code.
'Such as -- becomes a +
'++ becomes a +
'+- becomes a -
'-+ becomes a -
t$ = exp$
Do
bad = 0
Do
l = InStr(t$, "++")
If l Then t$ = Left$(t$, l - 1) + "+" + Mid$(t$, l + 2): bad = -1
Loop Until l = 0
Do
l = InStr(t$, "+-")
If l Then t$ = Left$(t$, l - 1) + "-" + Mid$(t$, l + 2): bad = -1
Loop Until l = 0
Do
l = InStr(t$, "-+")
If l Then t$ = Left$(t$, l - 1) + "-" + Mid$(t$, l + 2): bad = -1
Loop Until l = 0
Do
l = InStr(t$, "--")
If l Then t$ = Left$(t$, l - 1) + "+" + Mid$(t$, l + 2): bad = -1
Loop Until l = 0
Loop Until Not bad
DWD$ = t$
End Function
Holy cow that's fast!
RE: Calculations Needing Big Integers.... - SMcNeill - 07-09-2023
(07-09-2023, 02:25 PM)TerryRitchie Wrote: Holy cow that's fast!
Not as fast as I'd like as it's all string math, but it's about as fast as you're going to get a string math routine to work for you, without direct memory manipulation.
RE: Calculations Needing Big Integers.... - Space_Ghost - 07-09-2023
(07-09-2023, 02:27 PM)SMcNeill Wrote: (07-09-2023, 02:25 PM)TerryRitchie Wrote: Holy cow that's fast!
Not as fast as I'd like as it's all string math, but it's about as fast as you're going to get a string math routine to work for you, without direct memory manipulation. This is just insane! Amazing code Steve!
Greatly appreciate you sharing this and I have already learned quite a bit just looking at the code this a.m.
Cheers.
|